DAG-Sword: A Simulator of Large-Scale Network Topologies for DAG-Oriented Proof-of-Work Blockchains
- URL: http://arxiv.org/abs/2311.04638v1
- Date: Wed, 8 Nov 2023 12:31:11 GMT
- Title: DAG-Sword: A Simulator of Large-Scale Network Topologies for DAG-Oriented Proof-of-Work Blockchains
- Authors: Martin Perešíni, Tomáš Hladký, Kamil Malinka, Ivan Homoliak,
- Abstract summary: We focus on DAG-based consensus protocols and present a discrete-event simulator for them.
Our simulator can simulate realistic blockchain networks created from data of a Bitcoin network.
We extend the results of the related work that contains a small-scale network of 10 nodes by the results obtained on a large-scale network with 7000 nodes.
- Score: 2.0124254762298794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The blockchain brought interesting properties for many practical applications. However, some properties, such as the transaction processing throughput remained limited, especially in Proof-of-Work blockchains. Therefore, several promising directions, such as sharding designs and DAG-based protocols emerged. In this paper, we focus on DAG-based consensus protocols and present a discrete-event simulator for them. Our simulator can simulate realistic blockchain networks created from data of a Bitcoin network, while its network configuration and topology can be customized. The simulated network consists of honest and malicious miners. Malicious miners do not make any attack on consensus itself. Instead, they use a different transaction selection strategy than honest miners (who select transactions randomly) with the intention to earn unfairly more profits than honest miners at the cost of downgrading the protocol performance by duplicate transactions. As a consequence, this harms the performance of some DAG-based protocols (e.g., PHANTOM and GHOSTDAG) in terms of transaction processing throughput, which we demonstrate in our experiments and extend the results of the related work that contains a small-scale network of 10 nodes by the results obtained on a large-scale network with 7000 nodes. Next, we empirically compare different algorithms for the mempool structure, and we propose a composite mempool structure that is memory-efficient and thus convenient for simulations of resource-demanding large-scale networks.
Related papers
- Generative Blockchain: Transforming Blockchain from Transaction Recording to Transaction Generation through Proof-of-Merit [5.801684954657074]
generative blockchain aims to transform conventional blockchain technology by combining transaction generation and recording.
Central to our design is a novel consensus mechanism, Proof-of-Merit (PoM)
We demonstrate PoM on a ride service on-demand platform, where the task of solving complex transaction-generating problems is delegated to a pool of independent problem solvers.
arXiv Detail & Related papers (2024-08-23T20:51:10Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - BlockEmulator: An Emulator Enabling to Test Blockchain Sharding Protocols [18.755112831811836]
BlockEmulator is an experimental platform for emulating blockchain sharding mechanisms.
It adopts a lightweight blockchain architecture so developers can only focus on implementing their new protocols or mechanisms.
We have made BlockEmulator open-source in Github.
arXiv Detail & Related papers (2023-11-06T23:45:11Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
We propose a class of novel distributed Adam-type algorithms (emphi.e., SketchedAMSGrad) utilizing sketching.
Our new algorithm achieves a fast convergence rate of $O(frac1sqrtnT + frac1(k/d)2 T)$ with the communication cost of $O(k log(d))$ at each iteration.
arXiv Detail & Related papers (2022-10-14T01:42:05Z) - Blockchain Framework for Artificial Intelligence Computation [1.8148198154149393]
We design the block verification and consensus mechanism as a deep reinforcement-learning process.
Our method is used to design the next generation of public blockchain networks.
arXiv Detail & Related papers (2022-02-23T01:44:27Z) - Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking [5.579169055801065]
We study the problem of transaction tracking via link prediction, which provides a deeper understanding of transactions from a network perspective.
Specifically, we introduce an embedding based link prediction framework that is composed of temporal-amount snapshot multigraph (TASMG) and present temporal-amount walk (TAW)
By taking the realistic rules and features of transaction networks into consideration, we propose TASMG to model transaction records as a temporal-amount network and then present TAW to effectively embed accounts via their transaction records.
arXiv Detail & Related papers (2021-02-16T08:21:16Z) - Proof of Learning (PoLe): Empowering Machine Learning with Consensus
Building on Blockchains [7.854034211489588]
We propose a new consensus mechanism, Proof of Learning (PoLe), which directs the spent for consensus toward optimization of neural networks (NN)
In our mechanism, the training/testing data are released to the entire blockchain network (BCN) and the consensus nodes train NN models on the data.
We show that PoLe can achieve a more stable block generation rate, which leads to more efficient transaction processing.
arXiv Detail & Related papers (2020-07-29T22:53:43Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.