論文の概要: Using large language models to study human memory for meaningful
narratives
- arxiv url: http://arxiv.org/abs/2311.04742v1
- Date: Wed, 8 Nov 2023 15:11:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-09 15:37:03.604549
- Title: Using large language models to study human memory for meaningful
narratives
- Title(参考訳): 大きな言語モデルを用いた有意義な物語のための人間の記憶の研究
- Authors: Antonios Georgiou Tankut Can, Mikhail Katkov, Misha Tsodyks
- Abstract要約: 言語モデルは,人間の記憶を有意義な材料として研究するための科学的手段として利用できることを示す。
我々は,多数の参加者とともにオンライン記憶実験を行い,異なる長さの物語の認識・記憶データを収集した。
記憶における物語理解の役割を解明するために,提示された物語のスクランブル版を用いて,これらの実験を繰り返した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the most impressive achievements of the AI revolution is the
development of large language models that can generate meaningful text and
respond to instructions in plain English with no additional training necessary.
Here we show that language models can be used as a scientific instrument for
studying human memory for meaningful material. We developed a pipeline for
designing large scale memory experiments and analyzing the obtained results. We
performed online memory experiments with a large number of participants and
collected recognition and recall data for narratives of different lengths. We
found that both recall and recognition performance scale linearly with
narrative length. Furthermore, in order to investigate the role of narrative
comprehension in memory, we repeated these experiments using scrambled versions
of the presented stories. We found that even though recall performance declined
significantly, recognition remained largely unaffected. Interestingly, recalls
in this condition seem to follow the original narrative order rather than the
scrambled presentation, pointing to a contextual reconstruction of the story in
memory.
- Abstract(参考訳): ai革命の最も印象的な成果の1つは、意味のあるテキストを生成し、追加のトレーニングなしで平易な英語の指示に応答できる大きな言語モデルの開発である。
ここでは,有意義な素材に対する人間の記憶を研究するための科学的手段として,言語モデルが利用できることを示す。
大規模メモリ実験を設計し,結果を解析するパイプラインを開発した。
我々は,多数の参加者とオンライン記憶実験を行い,異なる長さの物語に対する認識と記憶データを収集した。
記憶と認識の両方のパフォーマンスは物語の長さと線形にスケールしていることがわかった。
さらに,記憶におけるナラティブ理解の役割を検討するために,提示したストーリーのスクランブル版を用いて,これらの実験を繰り返した。
その結果,リコール性能は著しく低下したが,認識にはほとんど影響を与えなかった。
興味深いことに、この状況でのリコールは、スクランブルドのプレゼンテーションではなく、オリジナルの物語の順序に従っており、記憶におけるストーリーの文脈的再構成を指している。
関連論文リスト
- Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
本稿では,出力確率と事前学習データ頻度の相関を計測する,記憶化,分布記憶化という拡張概念を導入する。
本研究は, より単純で知識集約的なタスクにおいて, 記憶がより大きな役割を担い, 一般化が, より困難で推論に基づくタスクの鍵であることを示す。
論文 参考訳(メタデータ) (2024-07-20T21:24:40Z) - Are Large Language Models Capable of Generating Human-Level Narratives? [114.34140090869175]
本稿ではストーリーテリングにおけるLLMの能力について考察し,物語の展開とプロットの進行に着目した。
本稿では,3つの談話レベルの側面から物語を分析するための新しい計算フレームワークを提案する。
談話機能の明示的な統合は、ニューラルストーリーテリングの40%以上の改善によって示されるように、ストーリーテリングを促進することができることを示す。
論文 参考訳(メタデータ) (2024-07-18T08:02:49Z) - A Multi-Perspective Analysis of Memorization in Large Language Models [10.276594755936529]
大規模言語モデル(LLM)は様々な分野で前例のない性能を示す。
LLMはそれらをトレーニングするのと同じコンテンツを生成することができる。
この研究は、様々な観点から記憶を包括的に議論した。
論文 参考訳(メタデータ) (2024-05-19T15:00:50Z) - In-Memory Learning: A Declarative Learning Framework for Large Language
Models [56.62616975119192]
本研究では,人間ラベルデータに頼らずにエージェントが環境に整合できる新しい学習フレームワークを提案する。
このプロセス全体がメモリコンポーネント内で変換され、自然言語で実装される。
フレームワークの有効性を実証し、この問題に対する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-05T08:25:11Z) - ROME: Memorization Insights from Text, Logits and Representation [17.458840481902644]
本稿では、トレーニングデータの直接処理をバイパスするROMEという革新的な手法を提案する。
具体的には、コンテキスト非依存、従来型、事実の3つの異なるタイプに分類されるデータセットを選択します。
そこで本研究では,生成したテキストのロジットと表現を調べることで,記憶されたサンプルと記憶されていないサンプルの相違に着目した。
論文 参考訳(メタデータ) (2024-03-01T13:15:30Z) - Exploring Memorization in Fine-tuned Language Models [53.52403444655213]
我々は,タスク間の微調整中に,言語モデルの暗記を探索する最初の包括的分析を行う。
オープンソースと、さまざまなタスクにまたがる独自の微調整LMによる研究は、暗記が様々な微調整タスクの間に強い相違を示すことを示している。
本稿では,この課題の相違をスパース符号化理論を用いて直感的に説明し,暗記と注目スコア分布との強い相関関係を明らかにする。
論文 参考訳(メタデータ) (2023-10-10T15:41:26Z) - How Relevant is Selective Memory Population in Lifelong Language
Learning? [15.9310767099639]
最先端のアプローチは、忘れることを防ぐ主要なアプローチとしてスパース体験のリプレイに依存している。
本研究は,テキスト分類と質問応答タスクの生涯学習過程において,選択記憶人口がどの程度関係があるかを検討する。
論文 参考訳(メタデータ) (2022-10-03T13:52:54Z) - Computational Lens on Cognition: Study Of Autobiographical Versus
Imagined Stories With Large-Scale Language Models [95.88620740809004]
GPT-3を用いた自伝的物語と想像的物語における出来事の物語の流れの相違について検討した。
想像された物語は自伝的物語よりも逐次性が高いことがわかった。
想像された物語と比較すると、自伝的な物語は、最初の人物に関連するより具体的な言葉と単語を含んでいる。
論文 参考訳(メタデータ) (2022-01-07T20:10:47Z) - Paragraph-level Commonsense Transformers with Recurrent Memory [77.4133779538797]
物語からコヒーレントなコモンセンス推論を生成するために,段落レベルの情報を含む談話認識モデルを訓練する。
以上の結果から,PARA-COMETは文レベルのベースライン,特にコヒーレントかつ新規な推論に優れていた。
論文 参考訳(メタデータ) (2020-10-04T05:24:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。