論文の概要: Interpretable Geoscience Artificial Intelligence (XGeoS-AI): Application to Demystify Image Recognition
- arxiv url: http://arxiv.org/abs/2311.04940v2
- Date: Tue, 7 May 2024 06:44:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 20:03:52.757928
- Title: Interpretable Geoscience Artificial Intelligence (XGeoS-AI): Application to Demystify Image Recognition
- Title(参考訳): 解釈可能な地球科学人工知能(XGeoS-AI):画像認識のデミスティファイションへの応用
- Authors: Jin-Jian Xu, Hao Zhang, Chao-Sheng Tang, Lin Li, Bin Shi,
- Abstract要約: 本研究では,地球科学における画像認識の謎を明らかにするための,解釈可能な地球科学人工知能(XGeoS-AI)フレームワークを提案する。
XGeoS-AIフレームワークは、人間の視覚のメカニズムにヒントを得て、画像全体の局所領域からしきい値を生成し、認識を完了させる。
- 参考スコア(独自算出の注目度): 10.366695826805659
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Earth science enters the era of big data, artificial intelligence (AI) not only offers great potential for solving geoscience problems, but also plays a critical role in accelerating the understanding of the complex, interactive, and multiscale processes of Earth's behavior. As geoscience AI models are progressively utilized for significant predictions in crucial situations, geoscience researchers are increasingly demanding their interpretability and versatility. This study proposes an interpretable geoscience artificial intelligence (XGeoS-AI) framework to unravel the mystery of image recognition in the Earth sciences, and its effectiveness and versatility is demonstrated by taking computed tomography (CT) image recognition as an example. Inspired by the mechanism of human vision, the proposed XGeoS-AI framework generates a threshold value from a local region within the whole image to complete the recognition. Different kinds of artificial intelligence (AI) methods, such as Support Vector Regression (SVR), Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), can be adopted as the AI engines of the proposed XGeoS-AI framework to efficiently complete geoscience image recognition tasks. Experimental results demonstrate that the effectiveness, versatility, and heuristics of the proposed framework have great potential in solving geoscience image recognition problems. Interpretable AI should receive more and more attention in the field of the Earth sciences, which is the key to promoting more rational and wider applications of AI in the field of Earth sciences. In addition, the proposed interpretable framework may be the forerunner of technological innovation in the Earth sciences.
- Abstract(参考訳): 地球科学がビッグデータの時代に入るにつれ、人工知能(AI)は地球科学の問題を解決する大きな可能性を提供するだけでなく、地球の行動の複雑でインタラクティブでマルチスケールなプロセスの理解を促進する上でも重要な役割を担っている。
地学AIモデルは、重要な状況において重要な予測のために徐々に活用されているため、地学研究者は、解釈可能性と汎用性をますます要求している。
本研究では,地球科学における画像認識の謎を明らかにするための解析可能な地球科学人工知能(XGeoS-AI)フレームワークを提案する。
XGeoS-AIフレームワークは、人間の視覚のメカニズムにヒントを得て、画像全体の局所領域からしきい値を生成し、認識を完了させる。
SVR(Support Vector Regression)、MLP(Multilayer Perceptron)、CNN(Convolutional Neural Network)など、さまざまな人工知能(AI)手法が提案されているXGeoS-AIフレームワークのAIエンジンとして採用され、地球科学画像認識タスクを効率的に完了する。
実験結果から,提案フレームワークの有効性,汎用性,ヒューリスティックスは,地学画像認識問題の解決に非常に有益であることが示唆された。
解釈可能なAIは、地球科学の分野でますます注目を集めるべきであり、これは地球科学の分野におけるAIのより合理的で広範な応用を促進する鍵である。
さらに、提案された解釈可能なフレームワークは、地球科学における技術革新の先駆者かもしれない。
関連論文リスト
- Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
smileGeoは、新しい視覚的ジオローカライゼーションフレームワークである。
エージェント間のコミュニケーションによって、SmithGeoはこれらのエージェントの固有の知識と、検索された情報を統合する。
その結果,本手法は現在の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2024-08-21T03:31:30Z) - GeoAI Reproducibility and Replicability: a computational and spatial perspective [3.46924652750064]
本稿では,このトピックを計算的,空間的両面から詳細に分析することを目的とする。
まず,GeoAI研究を再現するための主要な目標,すなわち検証(再現性),類似あるいは新しい問題の解法(再現性)の学習と適応,研究成果の一般化可能性(再現性)について検討する。
次に、GeoAI研究におけるR&Rの欠如の原因となる要因について、(1)トレーニングデータの選択と使用、(2)GeoAIモデル設計、トレーニング、デプロイメント、推論プロセスに存在する不確実性について論じる。
論文 参考訳(メタデータ) (2024-04-15T19:43:16Z) - When Geoscience Meets Generative AI and Large Language Models:
Foundations, Trends, and Future Challenges [4.013156524547072]
生成人工知能 (Generative Artificial Intelligence, GAI) は、合成データと出力を異なるモードで生成することを約束する新興分野である。
本稿では,地球科学における生成型AIと大規模言語モデルの可能性について検討する。
論文 参考訳(メタデータ) (2024-01-25T12:03:50Z) - GeoAI in Social Science [0.9527350779226282]
GeoAI(Geospatial AI、地理空間的人工知能)は、人工知能(AI)、地理空間的ビッグデータ、そして膨大なコンピューティングパワーを活用して、高度な自動化と知能の問題を解決するエキサイティングな新しい分野である。
本稿では、社会科学研究におけるAIの進歩を概観し、GeoAIを用いて重要なデータと知識ギャップを埋める重要な進歩について述べる。
論文 参考訳(メタデータ) (2023-12-19T20:23:18Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Explainable GeoAI: Can saliency maps help interpret artificial
intelligence's learning process? An empirical study on natural feature
detection [4.52308938611108]
本稿では,GeoAIと深層学習モデルの推論行動の解釈において,一般的なサリエンシマップ生成手法とその長所と短所を比較した。
実験では、2つのGeoAI対応データセットを使用して、研究結果の一般化性を実証した。
論文 参考訳(メタデータ) (2023-03-16T21:37:29Z) - AI Security for Geoscience and Remote Sensing: Challenges and Future
Trends [16.001238774325333]
本稿では,地球科学とリモートセンシング分野におけるAIセキュリティの現況を概観する。
敵攻撃、バックドア攻撃、連合学習、不確実性、説明可能性の5つの重要な側面をカバーしている。
著者の知識を最大限に活用するために,本稿は,地球科学とRSコミュニティにおけるAIセキュリティ関連研究の体系的レビューを行う最初の試みである。
論文 参考訳(メタデータ) (2022-12-19T10:54:51Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - OG-SGG: Ontology-Guided Scene Graph Generation. A Case Study in Transfer
Learning for Telepresence Robotics [124.08684545010664]
画像からのシーングラフ生成は、ロボット工学のようなアプリケーションに非常に関心を持つタスクである。
オントロジー誘導シーングラフ生成(OG-SGG)と呼ばれるフレームワークの初期近似を提案する。
論文 参考訳(メタデータ) (2022-02-21T13:23:15Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Applications of physics-informed scientific machine learning in
subsurface science: A survey [64.0476282000118]
地球系は、化石エネルギー探査、廃棄物処理、地質炭素隔離、再生可能エネルギー生成などの人間の活動によって変化した地質形成です。
したがって、ジオシステムの責任ある使用と探索は、効率的な監視、リスクアセスメント、および実用的な実装のための意思決定支援ツールに依存するジオシステムガバナンスにとって重要です。
近年の機械学習アルゴリズムと新しいセンシング技術の急速な進歩は、地下研究コミュニティがジオシステムガバナンスの有効性と透明性を向上させる新しい機会を提示しています。
論文 参考訳(メタデータ) (2021-04-10T13:40:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。