Mixture of Weak & Strong Experts on Graphs
- URL: http://arxiv.org/abs/2311.05185v2
- Date: Sat, 22 Jun 2024 22:45:07 GMT
- Title: Mixture of Weak & Strong Experts on Graphs
- Authors: Hanqing Zeng, Hanjia Lyu, Diyi Hu, Yinglong Xia, Jiebo Luo,
- Abstract summary: Mixture of weak and strong experts (Mowst)
Mowst is easy to optimize and achieves strong expressive power.
On 4 backbone GNN architectures, Mowst shows significant accuracy improvement on 6 standard node classification benchmarks.
- Score: 56.878757632521555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Realistic graphs contain both (1) rich self-features of nodes and (2) informative structures of neighborhoods, jointly handled by a Graph Neural Network (GNN) in the typical setup. We propose to decouple the two modalities by Mixture of weak and strong experts (Mowst), where the weak expert is a light-weight Multi-layer Perceptron (MLP), and the strong expert is an off-the-shelf GNN. To adapt the experts' collaboration to different target nodes, we propose a "confidence" mechanism based on the dispersion of the weak expert's prediction logits. The strong expert is conditionally activated in the low-confidence region when either the node's classification relies on neighborhood information, or the weak expert has low model quality. We reveal interesting training dynamics by analyzing the influence of the confidence function on loss: our training algorithm encourages the specialization of each expert by effectively generating soft splitting of the graph. In addition, our "confidence" design imposes a desirable bias toward the strong expert to benefit from GNN's better generalization capability. Mowst is easy to optimize and achieves strong expressive power, with a computation cost comparable to a single GNN. Empirically, Mowst on 4 backbone GNN architectures show significant accuracy improvement on 6 standard node classification benchmarks, including both homophilous and heterophilous graphs (https://github.com/facebookresearch/mowst-gnn).
Related papers
- Hierarchical Uncertainty-Aware Graph Neural Network [1.7495213911983414]
We introduce the Hierarchical Uncertainty-Aware Graph Neural Network (HU-GNN), which unifies multi-scale representation learning, principled uncertainty estimation, and self-supervised embedding diversity within a single end-to-end framework.
Specifically, HU-GNN adaptively forms node clusters and estimates uncertainty at multiple structural scales from individual nodes to higher levels.
arXiv Detail & Related papers (2025-04-28T14:22:18Z) - Overlap-aware meta-learning attention to enhance hypergraph neural networks for node classification [7.822666400307049]
We propose a novel framework, overlap-aware meta-learning attention for hypergraph neural networks (OMA-HGNN)
First, we introduce a hypergraph attention mechanism that integrates both structural and feature similarities. Specifically, we linearly combine their respective losses with weighted factors for the HGNN model.
Second, we partition nodes into different tasks based on their diverse overlap levels and develop a multi-task Meta-Weight-Net (MWN) to determine the corresponding weighted factors.
Third, we jointly train the internal MWN model with the losses from the external HGNN model and train the external model with the weighted factors
arXiv Detail & Related papers (2025-03-11T01:38:39Z) - Teaching MLPs to Master Heterogeneous Graph-Structured Knowledge for Efficient and Accurate Inference [53.38082028252104]
We introduce HG2M and HG2M+ to combine both HGNN's superior performance and relational's efficient inference.
HG2M directly trains students with node features as input and soft labels from teacher HGNNs as targets.
HG2Ms demonstrate a 379.24$times$ speedup in inference over HGNNs on the large-scale IGB-3M-19 dataset.
arXiv Detail & Related papers (2024-11-21T11:39:09Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - E2GNN: Efficient Graph Neural Network Ensembles for Semi-Supervised Classification [30.55931541782854]
This work studies ensemble learning for graph neural networks (GNNs) under the popular semi-supervised setting.
We propose an efficient ensemble learner--E2GNN to assemble multiple GNNs in a learnable way by leveraging both labeled and unlabeled nodes.
Comprehensive experiments over both transductive and inductive settings, across different GNN backbones and 8 benchmark datasets, demonstrate the superiority of E2GNN.
arXiv Detail & Related papers (2024-05-06T12:11:46Z) - Robust Graph Neural Networks via Unbiased Aggregation [18.681451049083407]
adversarial robustness of Graph Neural Networks (GNNs) has been questioned due to the false sense of security uncovered by strong adaptive attacks.
We provide a unified robust estimation point of view to understand their robustness and limitations.
arXiv Detail & Related papers (2023-11-25T05:34:36Z) - Global Minima, Recoverability Thresholds, and Higher-Order Structure in
GNNS [0.0]
We analyze the performance of graph neural network (GNN) architectures from the perspective of random graph theory.
We show how both specific higher-order structures in synthetic data and the mix of empirical structures in real data have dramatic effects on GNN performance.
arXiv Detail & Related papers (2023-10-11T17:16:33Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - NOSMOG: Learning Noise-robust and Structure-aware MLPs on Graphs [41.85649409565574]
Graph Networks (GNNs) have demonstrated their efficacy in dealing with non-Euclidean structural data.
Existing methods attempt to address this scalability issue by training multi-layer perceptrons (MLPs) exclusively on node content features.
In this paper, we propose to learn NOise-robust Structure-awares On Graphs (NOSMOG) to overcome the challenges.
arXiv Detail & Related papers (2022-08-22T01:47:07Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive
Benchmark Study [100.27567794045045]
Training deep graph neural networks (GNNs) is notoriously hard.
We present the first fair and reproducible benchmark dedicated to assessing the "tricks" of training deep GNNs.
arXiv Detail & Related papers (2021-08-24T05:00:37Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.