Dilute measurement-induced cooling into many-body ground states
- URL: http://arxiv.org/abs/2311.05258v2
- Date: Wed, 20 Dec 2023 17:40:29 GMT
- Title: Dilute measurement-induced cooling into many-body ground states
- Authors: Josias Langbehn, Kyrylo Snizhko, Igor Gornyi, Giovanna Morigi, Yuval
Gefen, Christiane P. Koch
- Abstract summary: Cooling a quantum system to its ground state is important for the characterization of non-trivial interacting systems.
We identify conditions under which measurement-based cooling protocols can be taken to the dilute limit.
For two examples of frustration-free one-dimensional spin chains, we show that steering on a single link is sufficient to cool these systems into their unique ground states.
- Score: 0.5492530316344587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooling a quantum system to its ground state is important for the
characterization of non-trivial interacting systems, and in the context of a
variety of quantum information platforms. In principle, this can be achieved by
employing measurement-based passive steering protocols, where the steering
steps are predetermined and are not based on measurement readouts. However,
measurements, i.e., coupling the system to auxiliary quantum degrees of
freedom, is rather costly, and protocols in which the number of measurements
scales with system size will have limited practical applicability. Here, we
identify conditions under which measurement-based cooling protocols can be
taken to the dilute limit. For two examples of frustration-free one-dimensional
spin chains, we show that steering on a single link is sufficient to cool these
systems into their unique ground states. We corroborate our analytical
arguments with finite-size numerical simulations and discuss further
applications.
Related papers
- Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Learning the tensor network model of a quantum state using a few
single-qubit measurements [0.0]
The constantly increasing dimensionality of artificial quantum systems demands highly efficient methods for their characterization and benchmarking.
Here we present a constructive and numerically efficient protocol which learns a tensor network model of an unknown quantum system.
arXiv Detail & Related papers (2023-09-01T11:11:52Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Measuring Arbitrary Physical Properties in Analog Quantum Simulation [0.5999777817331317]
A central challenge in analog quantum simulation is to characterize desirable physical properties of quantum states produced in experiments.
We propose and analyze a scalable protocol that leverages the ergodic nature of generic quantum dynamics.
Our protocol excitingly promises to overcome limited controllability and, thus, enhance the versatility and utility of near-term quantum technologies.
arXiv Detail & Related papers (2022-12-05T19:00:01Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Deep learning of quantum entanglement from incomplete measurements [0.2493740042317776]
We demonstrate that by employing neural networks we can quantify the degree of entanglement without needing to know the full description of the quantum state.
Our method allows for direct quantification of the quantum correlations using an incomplete set of local measurements.
We derive a method based on a convolutional network input that can accept data from various measurement scenarios and perform, to some extent, independently of the measurement device.
arXiv Detail & Related papers (2022-05-03T12:55:39Z) - Probing infinite many-body quantum systems with finite-size quantum
simulators [0.0]
We propose a protocol that makes optimal use of a given finite-size simulator by directly preparing, on its bulk region, a mixed state.
For systems of free fermions in one and two spatial dimensions, we illustrate and explain the underlying physics.
For the example of a non-integrable extended Su-Schrieffer-Heeger model, we demonstrate that our protocol enables a more accurate study of QPTs.
arXiv Detail & Related papers (2021-08-27T16:27:46Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.