Data Valuation and Detections in Federated Learning
- URL: http://arxiv.org/abs/2311.05304v3
- Date: Thu, 9 May 2024 07:40:35 GMT
- Title: Data Valuation and Detections in Federated Learning
- Authors: Wenqian Li, Shuran Fu, Fengrui Zhang, Yan Pang,
- Abstract summary: Federated Learning (FL) enables collaborative model training while preserving the privacy of raw data.
A challenge in this framework is the fair and efficient valuation of data, which is crucial for incentivizing clients to contribute high-quality data in the FL task.
This paper introduces a novel privacy-preserving method for evaluating client contributions and selecting relevant datasets without a pre-specified training algorithm in an FL task.
- Score: 4.899818550820576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) enables collaborative model training while preserving the privacy of raw data. A challenge in this framework is the fair and efficient valuation of data, which is crucial for incentivizing clients to contribute high-quality data in the FL task. In scenarios involving numerous data clients within FL, it is often the case that only a subset of clients and datasets are pertinent to a specific learning task, while others might have either a negative or negligible impact on the model training process. This paper introduces a novel privacy-preserving method for evaluating client contributions and selecting relevant datasets without a pre-specified training algorithm in an FL task. Our proposed approach FedBary, utilizes Wasserstein distance within the federated context, offering a new solution for data valuation in the FL framework. This method ensures transparent data valuation and efficient computation of the Wasserstein barycenter and reduces the dependence on validation datasets. Through extensive empirical experiments and theoretical analyses, we demonstrate the potential of this data valuation method as a promising avenue for FL research.
Related papers
- FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - StatAvg: Mitigating Data Heterogeneity in Federated Learning for Intrusion Detection Systems [22.259297167311964]
Federated learning (FL) is a decentralized learning technique that enables devices to collaboratively build a shared Machine Leaning (ML) or Deep Learning (DL) model without revealing their raw data to a third party.
Due to its privacy-preserving nature, FL has sparked widespread attention for building Intrusion Detection Systems (IDS) within the realm of cybersecurity.
We propose an effective method called Statistical Averaging (StatAvg) to alleviate non-independently and identically (non-iid) distributed features across local clients' data in FL.
arXiv Detail & Related papers (2024-05-20T14:41:59Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - DPP-based Client Selection for Federated Learning with Non-IID Data [97.1195165400568]
This paper proposes a client selection (CS) method to tackle the communication bottleneck of federated learning (FL)
We first analyze the effect of CS in FL and show that FL training can be accelerated by adequately choosing participants to diversify the training dataset in each round of training.
We leverage data profiling and determinantal point process (DPP) sampling techniques to develop an algorithm termed Federated Learning with DPP-based Participant Selection (FL-DP$3$S)
arXiv Detail & Related papers (2023-03-30T13:14:54Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Data Valuation for Vertical Federated Learning: A Model-free and
Privacy-preserving Method [14.451118953357605]
FedValue is a privacy-preserving, task-specific but model-free data valuation method for Vertical Federated learning (VFL)
We first introduce a novel data valuation metric, namely MShapley-CMI. The metric evaluates a data party's contribution to a predictive analytics task without the need of executing a machine learning model.
Next, we develop an innovative federated method that calculates the MShapley-CMI value for each data party in a privacy-preserving manner.
arXiv Detail & Related papers (2021-12-15T02:42:28Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Semi-Supervised Federated Learning with non-IID Data: Algorithm and
System Design [42.63120623012093]
Federated Learning (FL) allows edge devices (or clients) to keep data locally while simultaneously training a shared global model.
The distribution of the client's local training data is non-independent identically distributed (non-IID)
We present a robust semi-supervised FL system design, where the system aims to solve the problem of data availability and non-IID in FL.
arXiv Detail & Related papers (2021-10-26T03:41:48Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
Federated learning (FL) is a popular technique to train machine learning (ML) models on decentralized data sources.
The Shapley value (SV) defines a unique payoff scheme that satisfies many desiderata for a data value notion.
This paper proposes a variant of the SV amenable to FL, which we call the federated Shapley value.
arXiv Detail & Related papers (2020-09-14T04:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.