Dirichlet Active Learning
- URL: http://arxiv.org/abs/2311.05501v1
- Date: Thu, 9 Nov 2023 16:39:02 GMT
- Title: Dirichlet Active Learning
- Authors: Kevin Miller and Ryan Murray
- Abstract summary: Dirichlet Active Learning (DiAL) is a Bayesian-inspired approach to the design of active learning algorithms.
Our framework models feature-conditional class probabilities as a Dirichlet random field.
- Score: 1.4277428617774877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces Dirichlet Active Learning (DiAL), a Bayesian-inspired
approach to the design of active learning algorithms. Our framework models
feature-conditional class probabilities as a Dirichlet random field and lends
observational strength between similar features in order to calibrate the
random field. This random field can then be utilized in learning tasks: in
particular, we can use current estimates of mean and variance to conduct
classification and active learning in the context where labeled data is scarce.
We demonstrate the applicability of this model to low-label rate graph learning
by constructing ``propagation operators'' based upon the graph Laplacian, and
offer computational studies demonstrating the method's competitiveness with the
state of the art. Finally, we provide rigorous guarantees regarding the ability
of this approach to ensure both exploration and exploitation, expressed
respectively in terms of cluster exploration and increased attention to
decision boundaries.
Related papers
- NTKCPL: Active Learning on Top of Self-Supervised Model by Estimating
True Coverage [3.4806267677524896]
We propose a novel active learning strategy, neural tangent kernel clustering-pseudo-labels (NTKCPL)
It estimates empirical risk based on pseudo-labels and the model prediction with NTK approximation.
We validate our method on five datasets, empirically demonstrating that it outperforms the baseline methods in most cases.
arXiv Detail & Related papers (2023-06-07T01:43:47Z) - Poisson Reweighted Laplacian Uncertainty Sampling for Graph-based Active
Learning [1.6752182911522522]
We show that uncertainty sampling is sufficient to achieve exploration versus exploitation in graph-based active learning.
In particular, we use a recently developed algorithm, Poisson ReWeighted Laplace Learning (PWLL) for the classifier.
We present experimental results on a number of graph-based image classification problems.
arXiv Detail & Related papers (2022-10-27T22:07:53Z) - Reachability analysis in stochastic directed graphs by reinforcement
learning [67.87998628083218]
We show that the dynamics of the transition probabilities in a Markov digraph can be modeled via a difference inclusion.
We offer a methodology to design reward functions to provide upper and lower bounds on the reachability probabilities of a set of nodes.
arXiv Detail & Related papers (2022-02-25T08:20:43Z) - Efficient and Reliable Probabilistic Interactive Learning with
Structured Outputs [19.61401415890762]
We study interactive learning for structured output spaces in which labels are unknown and must be acquired.
We identify conditions under which a class of probabilistic models -- which we denote CRISPs -- meet all of these conditions.
Building on prior work on tractable probabilistic circuits, we illustrate how CRISPs enable robust and efficient active and skeptical learning in large structured output spaces.
arXiv Detail & Related papers (2022-02-17T10:29:32Z) - BALanCe: Deep Bayesian Active Learning via Equivalence Class Annealing [7.9107076476763885]
BALanCe is a deep active learning framework that mitigates the effect of uncertainty estimates.
Batch-BALanCe is a generalization of the sequential algorithm to the batched setting.
We show that Batch-BALanCe achieves state-of-the-art performance on several benchmark datasets for active learning.
arXiv Detail & Related papers (2021-12-27T15:38:27Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
We present a method for neural network interpretability by combining feature attribution with counterfactual explanations.
We show that this method can be used to quantitatively evaluate the performance of feature attribution methods in an objective manner.
arXiv Detail & Related papers (2021-09-28T00:53:34Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - Spectrum-Guided Adversarial Disparity Learning [52.293230153385124]
We propose a novel end-to-end knowledge directed adversarial learning framework.
It portrays the class-conditioned intraclass disparity using two competitive encoding distributions and learns the purified latent codes by denoising learned disparity.
The experiments on four HAR benchmark datasets demonstrate the robustness and generalization of our proposed methods over a set of state-of-the-art.
arXiv Detail & Related papers (2020-07-14T05:46:27Z) - Uncertainty Quantification for Deep Context-Aware Mobile Activity
Recognition and Unknown Context Discovery [85.36948722680822]
We develop a context-aware mixture of deep models termed the alpha-beta network.
We improve accuracy and F score by 10% by identifying high-level contexts.
In order to ensure training stability, we have used a clustering-based pre-training in both public and in-house datasets.
arXiv Detail & Related papers (2020-03-03T19:35:34Z) - Active Learning in Video Tracking [8.782204980889079]
We propose an adversarial approach for active learning with structured prediction domains that is tractable for matching.
We evaluate this approach algorithmically in an important structured prediction problems: object tracking in videos.
arXiv Detail & Related papers (2019-12-29T00:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.