Active Learning in Video Tracking
- URL: http://arxiv.org/abs/1912.12557v3
- Date: Sat, 21 Mar 2020 00:15:56 GMT
- Title: Active Learning in Video Tracking
- Authors: Sima Behpour
- Abstract summary: We propose an adversarial approach for active learning with structured prediction domains that is tractable for matching.
We evaluate this approach algorithmically in an important structured prediction problems: object tracking in videos.
- Score: 8.782204980889079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning methods, like uncertainty sampling, combined with
probabilistic prediction techniques have achieved success in various problems
like image classification and text classification. For more complex
multivariate prediction tasks, the relationships between labels play an
important role in designing structured classifiers with better performance.
However, computational time complexity limits prevalent probabilistic methods
from effectively supporting active learning. Specifically, while
non-probabilistic methods based on structured support vector machines can be
tractably applied to predicting bipartite matchings, conditional random fields
are intractable for these structures. We propose an adversarial approach for
active learning with structured prediction domains that is tractable for
matching. We evaluate this approach algorithmically in an important structured
prediction problems: object tracking in videos. We demonstrate better accuracy
and computational efficiency for our proposed method.
Related papers
- Weighted Aggregation of Conformity Scores for Classification [9.559062601251464]
Conformal prediction is a powerful framework for constructing prediction sets with valid coverage guarantees.
We propose a novel approach that combines multiple score functions to improve the performance of conformal predictors.
arXiv Detail & Related papers (2024-07-14T14:58:03Z) - Dirichlet Active Learning [1.4277428617774877]
Dirichlet Active Learning (DiAL) is a Bayesian-inspired approach to the design of active learning algorithms.
Our framework models feature-conditional class probabilities as a Dirichlet random field.
arXiv Detail & Related papers (2023-11-09T16:39:02Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
We study representation learning in partially observable Markov Decision Processes (POMDPs)
We first present an algorithm for decodable POMDPs that combines maximum likelihood estimation (MLE) and optimism in the face of uncertainty (OFU)
We then show how to adapt this algorithm to also work in the broader class of $gamma$-observable POMDPs.
arXiv Detail & Related papers (2023-06-21T16:04:03Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators.
We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective.
Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart.
arXiv Detail & Related papers (2022-11-01T03:20:28Z) - FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality
Assessment [93.09267863425492]
We argue that understanding both high-level semantics and internal temporal structures of actions in competitive sports videos is the key to making predictions accurate and interpretable.
We construct a new fine-grained dataset, called FineDiving, developed on diverse diving events with detailed annotations on action procedures.
arXiv Detail & Related papers (2022-04-07T17:59:32Z) - BALanCe: Deep Bayesian Active Learning via Equivalence Class Annealing [7.9107076476763885]
BALanCe is a deep active learning framework that mitigates the effect of uncertainty estimates.
Batch-BALanCe is a generalization of the sequential algorithm to the batched setting.
We show that Batch-BALanCe achieves state-of-the-art performance on several benchmark datasets for active learning.
arXiv Detail & Related papers (2021-12-27T15:38:27Z) - pRSL: Interpretable Multi-label Stacking by Learning Probabilistic Rules [0.0]
We present the probabilistic rule stacking (pRSL) which uses probabilistic propositional logic rules and belief propagation to combine the predictions of several underlying classifiers.
We derive algorithms for exact and approximate inference and learning, and show that pRSL reaches state-of-the-art performance on various benchmark datasets.
arXiv Detail & Related papers (2021-05-28T14:06:21Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
We present a theoretical framework for analyzing representations derived from a MAML-like algorithm.
We provide risk bounds on the best predictor found by fine-tuning via gradient descent, demonstrating that the algorithm can provably leverage the shared structure.
This separation result underscores the benefit of fine-tuning-based methods, such as MAML, over methods with "frozen representation" objectives in few-shot learning.
arXiv Detail & Related papers (2021-05-05T17:56:00Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Inferring Temporal Compositions of Actions Using Probabilistic Automata [61.09176771931052]
We propose to express temporal compositions of actions as semantic regular expressions and derive an inference framework using probabilistic automata.
Our approach is different from existing works that either predict long-range complex activities as unordered sets of atomic actions, or retrieve videos using natural language sentences.
arXiv Detail & Related papers (2020-04-28T00:15:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.