Quantum-to-classical crossover in the spin glass dynamics of cavity QED simulators
- URL: http://arxiv.org/abs/2311.05682v3
- Date: Thu, 6 Jun 2024 22:36:40 GMT
- Title: Quantum-to-classical crossover in the spin glass dynamics of cavity QED simulators
- Authors: Hossein Hosseinabadi, Darrick E. Chang, Jamir Marino,
- Abstract summary: We observe that quantum and classical spin glasses exhibit markedly different evolution.
We show that spin glass order is resonantly enhanced when the frequency of the bosonic mediators of the interactions approaches the value of the transverse field.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: By solving the quench dynamics of a frustrated many-body spin-boson problem, we investigate the role of spin size on the dynamical formation of spin glass order. In particular, we observe that quantum and classical spin glasses exhibit markedly different evolution. The former displays a quick relaxation of magnetization together with an exponential dependence of the spin glass order parameter on spin size, while the latter has long-lasting prethermal magnetization and a spin glass order parameter independent of spin size. The quantum-to-classical crossover is sharp and occurs for relatively small spins, highlighting the fragility of the quantum regime. Furthermore, we show that spin glass order is resonantly enhanced when the frequency of the bosonic mediators of the interactions approaches the value of the transverse field. Our predictions are relevant for all spin glass systems with $SU(2)$ degrees of freedom away from equilibrium, and can be examined in recently developed multi-mode cavity QED experiments.
Related papers
- Dynamics of spin-momentum entanglement from superradiant phase transitions [0.0]
We consider an experimentally feasible many-body cavity QED model describing a four-level system.
The resulting model comprises a pair of Dicke Hamiltonians constructed from pseudo-spin operators.
We discuss the role of cavity losses in steering the system's dynamics into such entangled states.
arXiv Detail & Related papers (2023-12-06T19:00:01Z) - Scalable spin squeezing in two-dimensional arrays of dipolar large-$S$
spins [0.0]
We show that spin-spin interactions lead to scalable spin squeezing along the non-equilibrium unitary evolution in a coherent spin state.
For sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that produced by the paradigmatic one-axis-twisting (OAT) model.
Spin squeezing with OAT-like scaling is shown to be protected by the robustness of long-range ferromagnetic order to quadratic shifts.
arXiv Detail & Related papers (2023-09-11T10:32:24Z) - Entanglement and replica symmetry breaking in a driven-dissipative
quantum spin glass [17.92148801290204]
We describe a quantum cavity QED system that realizes an intrinsically driven-dissipative spin glass.
We observe that entanglement plays an important role in the emergence of replica symmetry breaking.
This practicable system could serve as a testbed for exploring how quantum effects enrich the physics of spin glasses.
arXiv Detail & Related papers (2023-07-19T17:59:14Z) - Spin-phonon decoherence in solid-state paramagnetic defects from first
principles [79.4957965474334]
Paramagnetic defects in diamond and hexagonal boron nitride possess a unique combination of spin and optical properties that make them solid-state qubits.
Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available.
We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence.
arXiv Detail & Related papers (2022-12-22T13:48:05Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Direct observation of a dynamical glass transition in a nanomagnetic
artificial Hopfield network [0.0]
We present the experimental realization of an artificial spin glass consisting of dipolar coupled single-domain Ising-type nanomagnets arranged onto an interaction network.
Specifically, the temperature dependence of the spin glass correlation function follows a power law trend predicted from theoretical models on two-dimensional spin glasses.
arXiv Detail & Related papers (2022-02-04T20:18:27Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.