Feeding the Crave: How People with Eating Disorders Get Trapped in the Perpetual Cycle of Digital Food Content
- URL: http://arxiv.org/abs/2311.05920v3
- Date: Mon, 23 Sep 2024 05:50:41 GMT
- Title: Feeding the Crave: How People with Eating Disorders Get Trapped in the Perpetual Cycle of Digital Food Content
- Authors: Ryuhaerang Choi, Subin Park, Sujin Han, Sung-Ju Lee,
- Abstract summary: We conducted two studies with individuals with eating disorders to understand their motivations and practices of consuming digital food content.
Our study reveals that participants anticipate positive effects from food media to overcome their condition, but in practice, it often exacerbates their disorder.
- Score: 4.4818145497483854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have examined how digital food content impacts viewers' dietary health. A few have found that individuals with eating disorders are particularly sensitive to digital food content, such as eating and cooking videos, which contribute to disordered eating behaviors. However, there is a lack of comprehensive studies that investigate how these individuals interact with various digital food content. To fill this gap, we conducted two rounds of studies (N=23 and 22, respectively) with individuals with eating disorders to understand their motivations and practices of consuming digital food content. Our study reveals that participants anticipate positive effects from food media to overcome their condition, but in practice, it often exacerbates their disorder. We also discovered that many participants experienced a cycle of quitting and returning to digital food content consumption. Based on these findings, we articulate design implications for digital food content and multimedia platforms to support vulnerable individuals.
Related papers
- NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - How Much You Ate? Food Portion Estimation on Spoons [63.611551981684244]
Current image-based food portion estimation algorithms assume that users take images of their meals one or two times.
We introduce an innovative solution that utilizes stationary user-facing cameras to track food items on utensils.
The system is reliable for estimation of nutritional content of liquid-solid heterogeneous mixtures such as soups and stews.
arXiv Detail & Related papers (2024-05-12T00:16:02Z) - NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene
Dataset for Dietary Intake Estimation [68.49526750115429]
We introduce NutritionVerse-Real, an open access manually collected 2D food scene dataset for dietary intake estimation.
The NutritionVerse-Real dataset was created by manually collecting images of food scenes in real life, measuring the weight of every ingredient and computing the associated dietary content of each dish.
arXiv Detail & Related papers (2023-11-20T11:05:20Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating.
Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images.
We introduce NutritionVerse- Synth, the first large-scale dataset of 84,984 synthetic 2D food images with associated dietary information.
We also collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism.
arXiv Detail & Related papers (2023-09-14T13:29:41Z) - Comfort Foods and Community Connectedness: Investigating Diet Change
during COVID-19 Using YouTube Videos on Twitter [5.761735637750927]
Pandemic lockdowns at the start of the COVID-19 pandemic have drastically changed the routines of millions of people.
We use YouTube videos embedded in tweets about diet, exercise and fitness to investigate the influence of the pandemic lockdowns on diet and nutrition.
arXiv Detail & Related papers (2023-05-19T02:51:25Z) - NutritionVerse-3D: A 3D Food Model Dataset for Nutritional Intake
Estimation [65.47310907481042]
One in four older adults are malnourished.
Machine learning and computer vision show promise of automated nutrition tracking methods of food.
NutritionVerse-3D is a large-scale high-resolution dataset of 105 3D food models.
arXiv Detail & Related papers (2023-04-12T05:27:30Z) - Biased Bytes: On the Validity of Estimating Food Consumption from
Digital Traces [17.890674216192277]
We quantify the link between dietary behaviors as captured via social media (Twitter) v.s. a food-tracking application (MyFoodRepo)
We find that the food type distributions in social media v.s. food tracking diverge; e.g., bread is 2.5 times more frequent among consumed and tracked foods than on Twitter, whereas cake is 12 times more frequent on Twitter.
Across food types, food posted on Twitter is perceived as tastier, more caloric, less healthy, less likely to have been consumed at home, more complex, and larger-portioned, compared to consumed and tracked foods.
arXiv Detail & Related papers (2022-08-30T17:13:16Z) - Towards Building a Food Knowledge Graph for Internet of Food [66.57235827087092]
We review the evolution of food knowledge organization, from food classification to food to food knowledge graphs.
Food knowledge graphs play an important role in food search and Question Answering (QA), personalized dietary recommendation, food analysis and visualization.
Future directions for food knowledge graphs cover several fields such as multimodal food knowledge graphs and food intelligence.
arXiv Detail & Related papers (2021-07-13T06:26:53Z) - A Review of the Vision-based Approaches for Dietary Assessment [4.347952928399708]
Dietary-related problems such as obesity are a growing concern in todays modern world.
Computer-based food recognition offers automatic visual-based methods to assess dietary intake.
arXiv Detail & Related papers (2021-06-21T06:30:06Z) - Formation of Social Ties Influences Food Choice: A Campus-Wide
Longitudinal Study [35.304562448945184]
We use logs of 38 million food purchases made over an 8-year period on the Ecole Polytechnique Federale de Lausanne (EPFL) university campus.
We estimate causal effects from the passively observed log data.
We identify foods whose purchase frequency is impacted significantly by the eating partner's healthiness of food choice.
arXiv Detail & Related papers (2021-02-17T13:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.