Reddit's Appetite: Predicting User Engagement with Nutritional Content
- URL: http://arxiv.org/abs/2502.07377v1
- Date: Tue, 11 Feb 2025 08:54:53 GMT
- Title: Reddit's Appetite: Predicting User Engagement with Nutritional Content
- Authors: Gabriela Ozegovic, Thorsten Ruprechter, Denis Helic,
- Abstract summary: We study the impact of nutritional content on user engagement in food-related posts on Reddit.
Our results provide valuable insights for the design of more engaging online initiatives aimed at encouraging healthy eating habits.
- Score: 0.051205673783866146
- License:
- Abstract: The increased popularity of food communities on social media shapes the way people engage with food-related content. Due to the extensive consequences of such content on users' eating behavior, researchers have started studying the factors that drive user engagement with food in online platforms. However, while most studies focus on visual aspects of food content in social media, there exist only initial studies exploring the impact of nutritional content on user engagement. In this paper, we set out to close this gap and analyze food-related posts on Reddit, focusing on the association between the nutritional density of a meal and engagement levels, particularly the number of comments. Hence, we collect and empirically analyze almost 600,000 food-related posts and uncover differences in nutritional content between engaging and non-engaging posts. Moreover, we train a series of XGBoost models, and evaluate the importance of nutritional density while predicting whether users will comment on a post or whether a post will substantially resonate with the community. We find that nutritional features improve the baseline model's accuracy by 4%, with a positive contribution of calorie density towards prediction of engagement, suggesting that higher nutritional content is associated with higher user engagement in food-related posts. Our results provide valuable insights for the design of more engaging online initiatives aimed at, for example, encouraging healthy eating habits.
Related papers
- NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - ChatDiet: Empowering Personalized Nutrition-Oriented Food Recommender Chatbots through an LLM-Augmented Framework [2.3221599497640915]
ChatDiet is a novel framework designed specifically for personalized nutrition-oriented food recommendation chatbots.
ChatDiet integrates personal and population models, complemented by an orchestrator, to seamlessly retrieve and process pertinent information.
Our evaluation of ChatDiet includes a compelling case study, where we establish a causal personal model to estimate individual nutrition effects.
arXiv Detail & Related papers (2024-02-18T06:07:17Z) - NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene
Dataset for Dietary Intake Estimation [68.49526750115429]
We introduce NutritionVerse-Real, an open access manually collected 2D food scene dataset for dietary intake estimation.
The NutritionVerse-Real dataset was created by manually collecting images of food scenes in real life, measuring the weight of every ingredient and computing the associated dietary content of each dish.
arXiv Detail & Related papers (2023-11-20T11:05:20Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating.
Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images.
We introduce NutritionVerse- Synth, the first large-scale dataset of 84,984 synthetic 2D food images with associated dietary information.
We also collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism.
arXiv Detail & Related papers (2023-09-14T13:29:41Z) - Comfort Foods and Community Connectedness: Investigating Diet Change
during COVID-19 Using YouTube Videos on Twitter [5.761735637750927]
Pandemic lockdowns at the start of the COVID-19 pandemic have drastically changed the routines of millions of people.
We use YouTube videos embedded in tweets about diet, exercise and fitness to investigate the influence of the pandemic lockdowns on diet and nutrition.
arXiv Detail & Related papers (2023-05-19T02:51:25Z) - Biased Bytes: On the Validity of Estimating Food Consumption from
Digital Traces [17.890674216192277]
We quantify the link between dietary behaviors as captured via social media (Twitter) v.s. a food-tracking application (MyFoodRepo)
We find that the food type distributions in social media v.s. food tracking diverge; e.g., bread is 2.5 times more frequent among consumed and tracked foods than on Twitter, whereas cake is 12 times more frequent on Twitter.
Across food types, food posted on Twitter is perceived as tastier, more caloric, less healthy, less likely to have been consumed at home, more complex, and larger-portioned, compared to consumed and tracked foods.
arXiv Detail & Related papers (2022-08-30T17:13:16Z) - Towards the Creation of a Nutrition and Food Group Based Image Database [58.429385707376554]
We propose a framework to create a nutrition and food group based image database.
We design a protocol for linking food group based food codes in the U.S. Department of Agriculture's (USDA) Food and Nutrient Database for Dietary Studies (FNDDS)
Our proposed method is used to build a nutrition and food group based image database including 16,114 food datasets.
arXiv Detail & Related papers (2022-06-05T02:41:44Z) - Towards Building a Food Knowledge Graph for Internet of Food [66.57235827087092]
We review the evolution of food knowledge organization, from food classification to food to food knowledge graphs.
Food knowledge graphs play an important role in food search and Question Answering (QA), personalized dietary recommendation, food analysis and visualization.
Future directions for food knowledge graphs cover several fields such as multimodal food knowledge graphs and food intelligence.
arXiv Detail & Related papers (2021-07-13T06:26:53Z) - An Intelligent Passive Food Intake Assessment System with Egocentric
Cameras [14.067860492694251]
Malnutrition is a major public health concern in low-and-middle-income countries (LMICs)
We propose to implement an intelligent passive food intake assessment system via egocentric cameras.
Our method is able to reliably monitor food intake and give feedback on users' eating behaviour.
arXiv Detail & Related papers (2021-05-07T09:47:51Z) - Formation of Social Ties Influences Food Choice: A Campus-Wide
Longitudinal Study [35.304562448945184]
We use logs of 38 million food purchases made over an 8-year period on the Ecole Polytechnique Federale de Lausanne (EPFL) university campus.
We estimate causal effects from the passively observed log data.
We identify foods whose purchase frequency is impacted significantly by the eating partner's healthiness of food choice.
arXiv Detail & Related papers (2021-02-17T13:47:28Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
We learn an embedding of images and recipes in a common feature space, such that the corresponding image-recipe embeddings lie close to one another.
We propose Semantic-Consistent and Attention-based Networks (SCAN), which regularize the embeddings of the two modalities through aligning output semantic probabilities.
We show that we can outperform several state-of-the-art cross-modal retrieval strategies for food images and cooking recipes by a significant margin.
arXiv Detail & Related papers (2020-03-09T07:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.