論文の概要: A Neural Height-Map Approach for the Binocular Photometric Stereo
Problem
- arxiv url: http://arxiv.org/abs/2311.05958v1
- Date: Fri, 10 Nov 2023 09:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 15:32:23.208451
- Title: A Neural Height-Map Approach for the Binocular Photometric Stereo
Problem
- Title(参考訳): 両眼光度ステレオ問題に対するニューラルハイトマップアプローチ
- Authors: Fotios Logothetis, Ignas Budvytis, Roberto Cipolla
- Abstract要約: 双眼鏡測光ステレオ(PS)フレームワークは単視PSと同じ取得速度を持つが、推定幾何の質は著しく向上する。
本手法は両眼立体装置に適応したDiLiGenT-MVデータセットの最先端性能と新しい両眼測光ステレオデータセットLUCES-STを実現する。
- 参考スコア(独自算出の注目度): 36.404880059833324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we propose a novel, highly practical, binocular photometric
stereo (PS) framework, which has same acquisition speed as single view PS,
however significantly improves the quality of the estimated geometry.
As in recent neural multi-view shape estimation frameworks such as NeRF,
SIREN and inverse graphics approaches to multi-view photometric stereo (e.g.
PS-NeRF) we formulate shape estimation task as learning of a differentiable
surface and texture representation by minimising surface normal discrepancy for
normals estimated from multiple varying light images for two views as well as
discrepancy between rendered surface intensity and observed images. Our method
differs from typical multi-view shape estimation approaches in two key ways.
First, our surface is represented not as a volume but as a neural heightmap
where heights of points on a surface are computed by a deep neural network.
Second, instead of predicting an average intensity as PS-NeRF or introducing
lambertian material assumptions as Guo et al., we use a learnt BRDF and perform
near-field per point intensity rendering.
Our method achieves the state-of-the-art performance on the DiLiGenT-MV
dataset adapted to binocular stereo setup as well as a new binocular
photometric stereo dataset - LUCES-ST.
- Abstract(参考訳): 本研究は,単視点PSと同等の取得速度を持つ新規で実用性の高い両眼測光ステレオ(PS)フレームワークを提案するが,推定幾何の質は著しく向上する。
近年のNeRF, SIREN, Inverse graphics approach to multi-view photometric stereo (例:PS-NeRF) のようなニューラル・マルチビュー形状推定フレームワークにおいて, 2つのビューの複数の異なる光画像から推定される正常な表面の正規差を最小化し, 表面強度と観察された画像との差を最小化することにより, 形状推定タスクを微分可能な表面とテクスチャ表現の学習として定式化する。
本手法は, 従来の多視点形状推定手法とは大きく異なる。
まず、表面は体積ではなく、深層ニューラルネットワークによって表面上の点の高さが計算されるニューラルハイプマップとして表現される。
第2に,PS-NeRFとしての平均強度を予測したり,Guoなどとしてランベルト的な物質仮定を導入する代わりに,学習したBRDFを用いて点強度のレンダリングを行う。
本手法は両眼立体装置に適応したDiLiGenT-MVデータセットの最先端性能と新しい両眼測光ステレオデータセットLUCES-STを実現する。
関連論文リスト
- NPLMV-PS: Neural Point-Light Multi-View Photometric Stereo [32.39157133181186]
本稿では,新しい多視点測光ステレオ(MVPS)法を提案する。
我々の研究は、現在最先端のマルチビューPS-NeRFやスーパーノーマルと異なり、ピクセルごとの強度レンダリングを明示的に活用しています。
提案手法は,DiLiGenT-MVベンチマークで提案した古典的MVPS手法よりも優れていた。
論文 参考訳(メタデータ) (2024-05-20T14:26:07Z) - Deep Learning Methods for Calibrated Photometric Stereo and Beyond [86.57469194387264]
光度ステレオは、さまざまなシェーディングキューを持つ複数の画像から物体の表面の正常性を回復する。
深層学習法は、非ランベルト面に対する測光ステレオの文脈において強力な能力を示している。
論文 参考訳(メタデータ) (2022-12-16T11:27:44Z) - Uncertainty-Aware Deep Multi-View Photometric Stereo [100.97116470055273]
光度ステレオ(PS)は高周波表面の細部を復元するのに優れ、マルチビューステレオ(MVS)はPSによる低周波歪みを除去し、大域的な形状を維持するのに役立つ。
本稿では,PS と MVS の相補的強みを効果的に活用する手法を提案する。
我々は,不確実性を考慮したディープPSネットワークとディープMVSネットワークを用いて,画素ごとの表面の正規度と深さを推定する。
論文 参考訳(メタデータ) (2022-02-26T05:45:52Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
空間と測光の両方を同時に活用できる効率的な完全畳み込みアーキテクチャを提案する。
分離可能な4D畳み込みと2D熱マップを使うことで、サイズが小さくなり、効率が向上する。
論文 参考訳(メタデータ) (2021-03-22T18:06:58Z) - Learning Inter- and Intra-frame Representations for Non-Lambertian
Photometric Stereo [14.5172791293107]
2段階の畳み込みニューラルネットワーク(CNN)アーキテクチャを構築し、フレーム間およびフレーム内表現を構築します。
フレーム間およびフレーム間特徴抽出モジュールを配置する最適スキームを特定するために,ネットワーク設計の代替案を多数検討した。
論文 参考訳(メタデータ) (2020-12-26T11:22:56Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
本稿では,測光ステレオ問題に対する無補間深層ニューラルネットワークフレームワークを提案する。
既存のニューラルネットワークベースの方法は、物体の正確な光方向または接地正則のいずれかまたは両方を必要とします。
本稿では,この問題に対する未調整の神経逆レンダリング手法を提案する。
論文 参考訳(メタデータ) (2020-12-12T10:33:08Z) - Deep Photometric Stereo for Non-Lambertian Surfaces [89.05501463107673]
我々は、PS-FCNと呼ばれる、校正された測光ステレオのための完全な畳み込みディープネットワークを導入する。
PS-FCNは反射率観測から表面正規へのマッピングを学習し、一般的な等方反射率と未知の等方反射率で表面を処理できる。
光方向が不明な未定のシナリオに対処するため、入力画像から光方向を推定するLCNetという新しい畳み込みネットワークを導入する。
論文 参考訳(メタデータ) (2020-07-26T15:20:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。