A Proposal for a Lean and Functional Delivery versus Payment across two Blockchains
- URL: http://arxiv.org/abs/2311.05966v2
- Date: Fri, 1 Dec 2023 21:13:15 GMT
- Title: A Proposal for a Lean and Functional Delivery versus Payment across two Blockchains
- Authors: Christian P. Fries, Peter Kohl-Landgraf,
- Abstract summary: A payment chain operator hosts a stateless decryption service that allows decrypting messages with his secret key.
A "Payment Contract" is deployed on the payment chain that implements a function transferAndDecrypt(uint id, address from, address to, string keyEncryptedSuccess, string keyEncryptedFail)
The respective key can then trigger an associated transaction, e.g. claiming delivery by the buyer or re-claiming the locked asset by the seller.
- Score: 6.683852215353864
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose a lean and functional transaction scheme to establish a secure delivery-versus-payment across two blockchains, where a) no intermediary is required and b) the operator of the payment chain/payment system has a small overhead and does not need to store state. The main idea comes with two requirements: First, the payment chain operator hosts a stateless decryption service that allows decrypting messages with his secret key. Second, a "Payment Contract" is deployed on the payment chain that implements a function transferAndDecrypt(uint id, address from, address to, string keyEncryptedSuccess, string keyEncryptedFail) that processes the (trigger-based) payment and emits the decrypted key depending on the success or failure of the transaction. The respective key can then trigger an associated transaction, e.g. claiming delivery by the buyer or re-claiming the locked asset by the seller.
Related papers
- Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
This paper explores the feasibility of applying homomorphic encryption to SemCom.
We propose a task-oriented SemCom scheme secured through homomorphic encryption.
arXiv Detail & Related papers (2025-01-17T13:26:14Z) - Privacy-preserving server-supported decryption [2.2530496464901106]
We consider encryption systems with two-out-of-two threshold decryption, where one of the parties initiates the decryption and the other one assists.
Existing threshold decryption schemes disclose to the server the ciphertext that is being decrypted.
We give a construction, where the identity of the ciphertext is not leaked to the server, and the client's privacy is preserved.
arXiv Detail & Related papers (2024-10-25T06:47:53Z) - Functional Adaptor Signatures: Beyond All-or-Nothing Blockchain-based Payments [7.8925011858865695]
We propose functional adaptor signatures (FAS), a cryptographic primitive and show how it can be used to enable functional sales.
We formalize the security properties of FAS, among which is a new notion called witness privacy to capture seller's privacy.
We present multiple variants of witness privacy, namely, witness hiding, witness indistinguishability, and zero-knowledge.
arXiv Detail & Related papers (2024-10-14T23:17:03Z) - BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - Trustless Distributed Symmetric-key Encryption [0.6597195879147557]
We focus on the symmetric-key setting, allowing both threshold encryption and threshold decryption.
Previous work relies on the presence of a trusted third party.
We propose to remove the requirement of a trusted third party by designing a dealer-free setup.
arXiv Detail & Related papers (2024-08-28T20:56:30Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Crypters are pieces of software whose main goal is to transform a target binary so it can avoid detection from Anti Viruses (AVs) applications.
The crypter-as-a-service model has gained popularity, in response to the increased sophistication of detection mechanisms.
This paper provides the first study on an online underground market dedicated to crypter-as-a-service.
arXiv Detail & Related papers (2024-05-20T08:35:39Z) - T-Watch: Towards Timed Execution of Private Transaction in Blockchains [3.3887950601672086]
This paper proposes T-Watch, a decentralized and cost-efficient approach for users to schedule timed execution of transactions.
To protect the private elements of a scheduled transaction from getting disclosed before the future time-frame, T-Watch maintains shares of the decryption key of the scheduled transaction.
To reduce the cost of smart contract execution in T-Watch, we carefully design the proposed protocol to run in an optimistic mode by default and then switch to a pessimistic mode once misbehaviors occur.
arXiv Detail & Related papers (2024-05-14T01:58:32Z) - Sequencer Level Security [2.756899615600916]
We introduce the Sequencer Level Security (SLS) protocol, an enhancement to sequencing protocols of rollups.
We describe the mechanics of the protocol for both the transactions submitted to the rollup mempool, as well as transactions originating from Layer one.
We implement a prototype of the SLS protocol, Zircuit, which is built on top of Geth and the OP stack.
arXiv Detail & Related papers (2024-05-03T02:47:40Z) - Towards Secure and Trusted-by-Design Smart Contracts [0.3499870393443268]
Evidential transactions involve the exchange of any form of physical evidence, such as money, birth certificate, visas, tickets, etc.
Most of the time, evidential transactions occur in the context of complex procedures, called evidential protocols, among physical agents.
The blockchain provides the mechanisms to transfer evidence, while smart contracts allow encoding evidential protocols on top of a blockchain.
As a smart contract foregoes trusted third-parties and runs on several machines anonymously, it constitutes a highly critical program that has to be secure and trusted-by-design.
arXiv Detail & Related papers (2024-03-25T16:14:22Z) - Proof of Diligence: Cryptoeconomic Security for Rollups [19.10751432868712]
We introduce an incentivized watchtower network designed to serve as the first line of defense for rollups.
Our main contribution is a Proof of Diligence'' protocol that requires watchtowers to continuously provide a proof that they have verified L2 assertions.
arXiv Detail & Related papers (2024-02-11T16:40:33Z) - An Anonymous yet Accountable Contract Wallet System using Account Abstraction [1.9662978733004597]
We propose an anonymous yet accountable contract wallet system.
The proposed system provides anonymity of a transaction issuer that hides who agreed with running the contract wallet, and accountability of the issuer.
We discuss several potential applications of the proposed system, i.e., medical information sharing and asset management.
arXiv Detail & Related papers (2023-09-07T04:54:19Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - RiDDLE: Reversible and Diversified De-identification with Latent
Encryptor [57.66174700276893]
This work presents RiDDLE, short for Reversible and Diversified De-identification with Latent Encryptor.
Built upon a pre-learned StyleGAN2 generator, RiDDLE manages to encrypt and decrypt the facial identity within the latent space.
arXiv Detail & Related papers (2023-03-09T11:03:52Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Device-independent uncloneable encryption [0.0]
We introduce a variant of uncloneable encryption in which several possible decryption keys can decrypt a particular encryption.
We show that this variant of uncloneable encryption can be achieved device-independently.
We show that a simple modification of our scheme yields a single-decryptor encryption scheme.
arXiv Detail & Related papers (2022-10-03T16:17:01Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - CHAINGE: A Blockchain Solution to Automate Payment Detail Updates to
Subscription Services [2.309914459672557]
We propose a novel approach to automate, manage and simplify the process of updating and managing payments to user subscriptions.
This is done by utilising the Hyperledger Sawtooth blockchain framework.
The card being updated triggers an event on the blockchain, which allow for the payment details to be updated on subscription systems automatically.
arXiv Detail & Related papers (2021-08-28T21:00:33Z) - Regulation conform DLT-operable payment adapter based on trustless -
justified trust combined generalized state channels [77.34726150561087]
Economy of Things (EoT) will be based on software agents running on peer-to-peer trustless networks.
We give an overview of current solutions that differ in their fundamental values and technological possibilities.
We propose to combine the strengths of the crypto based, decentralized trustless elements with established and well regulated means of payment.
arXiv Detail & Related papers (2020-07-03T10:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.