T-Watch: Towards Timed Execution of Private Transaction in Blockchains
- URL: http://arxiv.org/abs/2405.08268v1
- Date: Tue, 14 May 2024 01:58:32 GMT
- Title: T-Watch: Towards Timed Execution of Private Transaction in Blockchains
- Authors: Chao Li, Balaji Palanisamy,
- Abstract summary: This paper proposes T-Watch, a decentralized and cost-efficient approach for users to schedule timed execution of transactions.
To protect the private elements of a scheduled transaction from getting disclosed before the future time-frame, T-Watch maintains shares of the decryption key of the scheduled transaction.
To reduce the cost of smart contract execution in T-Watch, we carefully design the proposed protocol to run in an optimistic mode by default and then switch to a pessimistic mode once misbehaviors occur.
- Score: 3.3887950601672086
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In blockchains such as Bitcoin and Ethereum, transactions represent the primary mechanism that the external world can use to trigger a change of blockchain state. Transactions serve as key sources of evidence and play a vital role in forensic analysis. Timed transaction refers to a specific class of service that enables a user to schedule a transaction to change the blockchain state during a chosen future time-frame. This paper proposes T-Watch, a decentralized and cost-efficient approach for users to schedule timed execution of any type of transaction in Ethereum with privacy guarantees. T-Watch employs a novel combination of threshold secret sharing and decentralized smart contracts. To protect the private elements of a scheduled transaction from getting disclosed before the future time-frame, T-Watch maintains shares of the decryption key of the scheduled transaction using a group of executors recruited in a blockchain network before the specified future time-frame and restores the scheduled transaction at a proxy smart contract to trigger the change of blockchain state at the required time-frame. To reduce the cost of smart contract execution in T-Watch, we carefully design the proposed protocol to run in an optimistic mode by default and then switch to a pessimistic mode once misbehaviors occur. Furthermore, the protocol supports users to form service request pooling to further reduce the gas cost. We rigorously analyze the security of T-Watch and implement the protocol over the Ethereum official test network. The results demonstrate that T-Watch is more scalable compared to the state of the art and could reduce the cost by over 90% through pooling.
Related papers
- Taming the Beast of User-Programmed Transactions on Blockchains: A Declarative Transaction Approach [0.0]
"Technology of trust" can be used to mediate transactions between non-trusting parties without the need for a central authority.
Transactions are native to the blockchain platform or user-defined via user programs called smart contracts.
Despite the significant flexibility in transaction programmability that smart contracts offer, they pose several usability, robustness, and performance challenges.
This paper proposes an alternative transaction framework that incorporates more primitives into the native set of transaction types.
arXiv Detail & Related papers (2024-11-04T20:44:14Z) - BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Monitoring the Future of Smart Contracts [0.2294014185517203]
We propose a model of computation that allows (bounded) future monitors.
We show our monitors correct respect of legacy transactions, how they implement future bounded monitors and how they guarantee progress.
arXiv Detail & Related papers (2024-01-22T16:31:45Z) - PTTS: Zero-Knowledge Proof-based Private Token Transfer System on Ethereum Blockchain and its Network Flow Based Balance Range Privacy Attack Analysis [0.0]
We propose a Private Token Transfer System (PTTS) for the public blockchain.
For the proposed framework, zero-knowledge based protocol has been designed using Zokrates and integrated into our private token smart contract.
In the second part of the paper, we provide security and privacy analysis including the replay attack and the balance range privacy attack.
arXiv Detail & Related papers (2023-08-29T09:13:31Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - A formal model for ledger management systems based on contracts and
temporal logic [0.0]
In second-generation blockchains such as the ledger is coupled with smart contracts.
The current implementation of smart contracts as arbitrary programming constructs has made them susceptible to dangerous bugs.
We propose here to recompose the split and recover the reliability of databases by formalizing a notion of contract modelled as a finite-state automaton.
arXiv Detail & Related papers (2021-09-30T15:34:28Z) - Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking [5.579169055801065]
We study the problem of transaction tracking via link prediction, which provides a deeper understanding of transactions from a network perspective.
Specifically, we introduce an embedding based link prediction framework that is composed of temporal-amount snapshot multigraph (TASMG) and present temporal-amount walk (TAW)
By taking the realistic rules and features of transaction networks into consideration, we propose TASMG to model transaction records as a temporal-amount network and then present TAW to effectively embed accounts via their transaction records.
arXiv Detail & Related papers (2021-02-16T08:21:16Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.