Regressions on quantum neural networks at maximal expressivity
- URL: http://arxiv.org/abs/2311.06090v1
- Date: Fri, 10 Nov 2023 14:43:24 GMT
- Title: Regressions on quantum neural networks at maximal expressivity
- Authors: Iv\'an Panadero, Yue Ban, Hilario Espin\'os, Ricardo Puebla, Jorge
Casanova and Erik Torrontegui
- Abstract summary: We analyze the expressivity of a universal deep neural network that can be organized as a series of nested qubit rotations.
The maximal expressive power increases with the depth of the network and the number of qubits, but is fundamentally bounded by the data encoding mechanism.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyze the expressivity of a universal deep neural network that can be
organized as a series of nested qubit rotations, accomplished by adjustable
data re-uploads. While the maximal expressive power increases with the depth of
the network and the number of qubits, it is fundamentally bounded by the data
encoding mechanism. Focusing on regression problems, we systematically
investigate the expressivity limits for different measurements and
architectures. The presence of entanglement, either by entangling layers or
global measurements, saturate towards this bound. In these cases, entanglement
leads to an enhancement of the approximation capabilities of the network
compared to local readouts of the individual qubits in non-entangling networks.
We attribute this enhancement to a larger survival set of Fourier harmonics
when decomposing the output signal.
Related papers
- On the growth of the parameters of approximating ReLU neural networks [0.542249320079018]
This work focuses on the analysis of fully connected feed forward ReLU neural networks as they approximate a given, smooth function.
In contrast to conventionally studied universal approximation properties under increasing architectures, we are concerned with the growth of the parameters of approximating networks.
arXiv Detail & Related papers (2024-06-21T07:45:28Z) - Spectral complexity of deep neural networks [2.099922236065961]
We use the angular power spectrum of the limiting field to characterize the complexity of the network architecture.
On this basis, we classify neural networks as low-disorder, sparse, or high-disorder.
We show how this classification highlights a number of distinct features for standard activation functions, and in particular, sparsity properties of ReLU networks.
arXiv Detail & Related papers (2024-05-15T17:55:05Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
We propose a quantum circuit-based algorithm to implement quantum residual neural networks (QResNets)
Our work lays the foundation for a complete quantum implementation of the classical residual neural networks.
arXiv Detail & Related papers (2024-01-29T04:00:51Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Exploring the Approximation Capabilities of Multiplicative Neural
Networks for Smooth Functions [9.936974568429173]
We consider two classes of target functions: generalized bandlimited functions and Sobolev-Type balls.
Our results demonstrate that multiplicative neural networks can approximate these functions with significantly fewer layers and neurons.
These findings suggest that multiplicative gates can outperform standard feed-forward layers and have potential for improving neural network design.
arXiv Detail & Related papers (2023-01-11T17:57:33Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime.
We show that the neural networks possess a different limiting kernel which we call textitbias-generalized NTK
We also study various properties of the neural networks with this new kernel.
arXiv Detail & Related papers (2023-01-01T02:11:39Z) - Dense Hebbian neural networks: a replica symmetric picture of supervised
learning [4.133728123207142]
We consider dense, associative neural-networks trained by a teacher with supervision.
We investigate their computational capabilities analytically, via statistical-mechanics of spin glasses, and numerically, via Monte Carlo simulations.
arXiv Detail & Related papers (2022-11-25T13:37:47Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.