Moment expansion method for composite open quantum systems including a damped oscillator mode
- URL: http://arxiv.org/abs/2311.06113v2
- Date: Sun, 30 Jun 2024 15:16:53 GMT
- Title: Moment expansion method for composite open quantum systems including a damped oscillator mode
- Authors: Masaaki Tokieda,
- Abstract summary: We develop a numerical method to compute the reduced density matrix of the target system and the low-order moments of the quadrature operators.
The application to an optomechanical setting shows that the new method can compute the correlation functions accurately with a significant reduction in the computational cost.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a damped oscillator mode that is resonantly driven and is coupled to an arbitrary target system via the position quadrature operator. For such a composite open quantum system, we develop a numerical method to compute the reduced density matrix of the target system and the low-order moments of the quadrature operators. In this method, we solve the evolution equations for quantities related to moments of the quadrature operators, rather than for the density matrix elements as in the conventional approach. The application to an optomechanical setting shows that the new method can compute the correlation functions accurately with a significant reduction in the computational cost. Since the method does not involve any approximation in its abstract formulation itself, we investigate the numerical accuracy closely. This study reveals the numerical sensitivity of the new approach in certain parameter regimes. We find that this issue can be alleviated by using the position basis instead of the commonly used Fock basis.
Related papers
- Explicit near-optimal quantum algorithm for solving the advection-diffusion equation [0.0]
An explicit quantum algorithm is proposed for modeling dissipative initial-value problems.
We propose a quantum circuit based on a simple coordinate transformation that turns the dependence on the summation index into a trigonometric function.
The proposed algorithm can be used for modeling a wide class of nonunitary initial-value problems.
arXiv Detail & Related papers (2025-01-19T19:03:29Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Randomized semi-quantum matrix processing [0.0]
We present a hybrid quantum-classical framework for simulating generic matrix functions.
The method is based on randomization over the Chebyshev approximation of the target function.
We prove advantages on average depths, including quadratic speed-ups on costly parameters.
arXiv Detail & Related papers (2023-07-21T18:00:28Z) - Effective Hamiltonian approach to the exact dynamics of open system by complex discretization approximation for environment [0.0]
We paper proposes a novel generalization of the discretization approximation method into the complex plane using complex Gauss quadratures.
An effective Hamiltonian can be established by this way, which is non-Hermitian and demonstrates the complex energy modes with negative imaginary part.
arXiv Detail & Related papers (2023-03-12T05:34:29Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Exploring the role of parameters in variational quantum algorithms [59.20947681019466]
We introduce a quantum-control-inspired method for the characterization of variational quantum circuits using the rank of the dynamical Lie algebra.
A promising connection is found between the Lie rank, the accuracy of calculated energies, and the requisite depth to attain target states via a given circuit architecture.
arXiv Detail & Related papers (2022-09-28T20:24:53Z) - A new method for directly computing reduced density matrices [0.0]
We demonstrate the power of a first principle-based and practicable method that allows for the perturbative computation of reduced density matrix elements of an open quantum system.
The approach is based on techniques from non-equilibrium quantum field theory like thermo field dynamics, the Schwinger-Keldsyh formalism, and the Feynman-Vernon influence functional.
arXiv Detail & Related papers (2022-04-19T11:58:36Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
We introduce a manifold learning-based method for uncertainty quantification (UQ) in describing systems.
The proposed method is able to achieve highly accurate approximations which ultimately lead to the significant acceleration of UQ tasks.
arXiv Detail & Related papers (2021-07-21T00:24:15Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.