Search-Based Fairness Testing: An Overview
- URL: http://arxiv.org/abs/2311.06175v1
- Date: Fri, 10 Nov 2023 16:47:56 GMT
- Title: Search-Based Fairness Testing: An Overview
- Authors: Hussaini Mamman, Shuib Basri, Abdullateef Oluwaqbemiga Balogun,
Abdullahi Abubakar Imam, Ganesh Kumar, Luiz Fernando Capretz
- Abstract summary: biases in AI systems raise ethical and societal concerns.
This paper reviews current research on fairness testing, particularly its application through search-based testing.
- Score: 4.453735522794044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) has demonstrated remarkable capabilities in
domains such as recruitment, finance, healthcare, and the judiciary. However,
biases in AI systems raise ethical and societal concerns, emphasizing the need
for effective fairness testing methods. This paper reviews current research on
fairness testing, particularly its application through search-based testing.
Our analysis highlights progress and identifies areas of improvement in
addressing AI systems biases. Future research should focus on leveraging
established search-based testing methodologies for fairness testing.
Related papers
- Fairness in AI-Driven Recruitment: Challenges, Metrics, Methods, and Future Directions [0.0]
Big data and machine learning has led to a rapid transformation in the traditional recruitment process.
Given the prevalence of AI-based recruitment, there is growing concern that human biases may carry over to decisions made by these systems.
This paper provides a comprehensive overview of this emerging field by discussing the types of biases encountered in AI-driven recruitment.
arXiv Detail & Related papers (2024-05-30T05:25:14Z) - Towards Clinical AI Fairness: Filling Gaps in the Puzzle [15.543248260582217]
This review systematically pinpoints several deficiencies concerning both healthcare data and the provided AI fairness solutions.
We highlight the scarcity of research on AI fairness in many medical domains where AI technology is increasingly utilized.
To bridge these gaps, our review advances actionable strategies for both the healthcare and AI research communities.
arXiv Detail & Related papers (2024-05-28T07:42:55Z) - Survey of Computerized Adaptive Testing: A Machine Learning Perspective [66.26687542572974]
Computerized Adaptive Testing (CAT) provides an efficient and tailored method for assessing the proficiency of examinees.
This paper aims to provide a machine learning-focused survey on CAT, presenting a fresh perspective on this adaptive testing method.
arXiv Detail & Related papers (2024-03-31T15:09:47Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Towards FATE in AI for Social Media and Healthcare: A Systematic Review [0.0]
This survey focuses on the concepts of fairness, accountability, transparency, and ethics (FATE) within the context of AI.
We found that statistical and intersectional fairness can support fairness in healthcare on social media platforms.
While solutions like simulation, data analytics, and automated systems are widely used, their effectiveness can vary.
arXiv Detail & Related papers (2023-06-05T17:25:42Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Error Parity Fairness: Testing for Group Fairness in Regression Tasks [5.076419064097733]
This work presents error parity as a regression fairness notion and introduces a testing methodology to assess group fairness.
It is followed by a suitable permutation test to compare groups on several statistics to explore disparities and identify impacted groups.
Overall, the proposed regression fairness testing methodology fills a gap in the fair machine learning literature and may serve as a part of larger accountability assessments and algorithm audits.
arXiv Detail & Related papers (2022-08-16T17:47:20Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - A Framework for Fairness: A Systematic Review of Existing Fair AI
Solutions [4.594159253008448]
A large portion of fairness research has gone to producing tools that machine learning practitioners can use to audit for bias while designing their algorithms.
There is a lack of application of these fairness solutions in practice.
This review provides an in-depth summary of the algorithmic bias issues that have been defined and the fairness solution space that has been proposed.
arXiv Detail & Related papers (2021-12-10T17:51:20Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.