論文の概要: Adversarial Fine-tuning using Generated Respiratory Sound to Address
Class Imbalance
- arxiv url: http://arxiv.org/abs/2311.06480v1
- Date: Sat, 11 Nov 2023 05:02:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 18:19:59.871606
- Title: Adversarial Fine-tuning using Generated Respiratory Sound to Address
Class Imbalance
- Title(参考訳): クラス不均衡に対処するために発生した呼吸音を用いた敵対的微調整
- Authors: June-Woo Kim, Chihyeon Yoon, Miika Toikkanen, Sangmin Bae, Ho-Young
Jung
- Abstract要約: 本稿では,条件付きニューラルボコーダとして音声拡散モデルを用いて,不均衡な呼吸音データを増やすための簡単なアプローチを提案する。
また, 合成音と実呼吸音の特徴を整合させ, 呼吸音の分類性能を向上させるために, 簡易かつ効果的な対向微調整法を実証した。
- 参考スコア(独自算出の注目度): 1.3686993145787067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep generative models have emerged as a promising approach in the medical
image domain to address data scarcity. However, their use for sequential data
like respiratory sounds is less explored. In this work, we propose a
straightforward approach to augment imbalanced respiratory sound data using an
audio diffusion model as a conditional neural vocoder. We also demonstrate a
simple yet effective adversarial fine-tuning method to align features between
the synthetic and real respiratory sound samples to improve respiratory sound
classification performance. Our experimental results on the ICBHI dataset
demonstrate that the proposed adversarial fine-tuning is effective, while only
using the conventional augmentation method shows performance degradation.
Moreover, our method outperforms the baseline by 2.24% on the ICBHI Score and
improves the accuracy of the minority classes up to 26.58%. For the
supplementary material, we provide the code at
https://github.com/kaen2891/adversarial_fine-tuning_using_generated_respiratory_sound.
- Abstract(参考訳): 深層生成モデルは、データの不足に対処するために医療画像領域において有望なアプローチとして現れてきた。
しかし、呼吸音などのシーケンシャルなデータに対する使用は調査されていない。
本研究では,条件付きニューラルボコーダとして音響拡散モデルを用いた非平衡呼吸音データ拡張手法を提案する。
また, 合成音と実呼吸音の特徴を整合させ, 呼吸音の分類性能を向上させるために, 簡易かつ効果的な対向微調整法を実証した。
icbhiデータセットにおける実験結果から,提案手法は,従来の拡張法のみを用いて性能低下を示すが,逆向きの微調整が効果的であることが判明した。
さらに,本手法はicbhiスコアでベースラインを2.24%上回り,マイノリティクラスの精度を26.58%まで向上させる。
追加資料については、https://github.com/kaen2891/adversarial_fine-tuning_using_create_respiratory_soundでコードを提供します。
関連論文リスト
- Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
敵の浄化は、敵の攻撃からニューラルネットワークを守るための有望なアプローチの1つである。
分類器決定境界から遠ざかって, 清浄するgUided Purification (COUP)アルゴリズムを提案する。
実験結果から, COUPは強力な攻撃法でより優れた対向的堅牢性が得られることが示された。
論文 参考訳(メタデータ) (2024-08-12T02:48:00Z) - BTS: Bridging Text and Sound Modalities for Metadata-Aided Respiratory Sound Classification [0.0]
音声サンプルのメタデータから派生した自由テキスト記述を用いて,事前学習したテキスト・オーディオ・マルチモーダルモデルを微調整する。
提案手法は,ICBHIデータセットの最先端性能を達成し,先行した最良値の1.17%を突破した。
論文 参考訳(メタデータ) (2024-06-10T20:49:54Z) - Rene: A Pre-trained Multi-modal Architecture for Auscultation of Respiratory Diseases [5.810320353233697]
本稿では,呼吸音の認識に適した大規模モデルであるReneを紹介する。
我々の革新的なアプローチは、事前訓練された音声認識モデルを用いて呼吸音を処理している。
我々は,Reneアーキテクチャを用いた実時間呼吸音識別システムを開発した。
論文 参考訳(メタデータ) (2024-05-13T03:00:28Z) - RepAugment: Input-Agnostic Representation-Level Augmentation for Respiratory Sound Classification [2.812716452984433]
本稿では,プレトレーニング音声モデルの呼吸音分類への応用について検討する。
音声と肺の音響サンプルの間には特徴的ギャップがあり,このギャップを埋めるためには,データ拡張が不可欠である。
入力に依存しない表現レベルの拡張手法であるRepAugmentを提案する。
論文 参考訳(メタデータ) (2024-05-05T16:45:46Z) - Stethoscope-guided Supervised Contrastive Learning for Cross-domain
Adaptation on Respiratory Sound Classification [1.690115983364313]
本稿では、ソースドメインから異なるターゲットドメインに知識を転送するクロスドメイン適応手法を提案する。
特に、個々の領域として異なる聴診器タイプを考慮し、新しい聴診器誘導型教師付きコントラスト学習手法を提案する。
ICBHIデータセットの実験結果から,提案手法はドメイン依存性の低減とICBHIスコア61.71%の達成に有効であることが示された。
論文 参考訳(メタデータ) (2023-12-15T08:34:31Z) - Boosting Fast and High-Quality Speech Synthesis with Linear Diffusion [85.54515118077825]
本稿では, 常微分方程式に基づく線形拡散モデル(LinDiff)を提案する。
計算複雑性を低減するため、LinDiffでは、入力信号を小さなパッチに分割するパッチベースの処理アプローチを採用している。
我々のモデルは、より高速な合成速度で自己回帰モデルに匹敵する品質の音声を合成することができる。
論文 参考訳(メタデータ) (2023-06-09T07:02:43Z) - Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on
Respiratory Sound Classification [19.180927437627282]
本稿では,潜在空間における混合表現を識別するために,新規かつ効果的なパッチ・ミクス・コントラスト学習を提案する。
提案手法はICBHIデータセット上での最先端性能を実現し,4.08%の改善により先行先行スコアを上回った。
論文 参考訳(メタデータ) (2023-05-23T13:04:07Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Deep Feature Learning for Medical Acoustics [78.56998585396421]
本研究の目的は,医療音響の課題における学習内容の比較である。
ヒトの呼吸音と心臓の鼓動を健康的または病態の影響の2つのカテゴリに分類する枠組みが実装されている。
論文 参考訳(メタデータ) (2022-08-05T10:39:37Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
私たちは、Convolutional Neural Networksのアンサンブルを適応させて、スピーカーがCOVID-19に感染しているかどうかを分類します。
最終的には、74.9%のUnweighted Average Recall(UAR)、またはニューラルネットワークをアンサンブルすることで、ROC曲線(AUC)の80.7%を達成する。
論文 参考訳(メタデータ) (2020-12-29T01:14:17Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。