論文の概要: Stethoscope-guided Supervised Contrastive Learning for Cross-domain
Adaptation on Respiratory Sound Classification
- arxiv url: http://arxiv.org/abs/2312.09603v1
- Date: Fri, 15 Dec 2023 08:34:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 16:36:41.480469
- Title: Stethoscope-guided Supervised Contrastive Learning for Cross-domain
Adaptation on Respiratory Sound Classification
- Title(参考訳): 呼吸音の分類に基づくクロスドメイン適応のためのステレオガイド付き教師付きコントラスト学習
- Authors: June-Woo Kim and Sangmin Bae and Won-Yang Cho and Byungjo Lee and
Ho-Young Jung
- Abstract要約: 本稿では、ソースドメインから異なるターゲットドメインに知識を転送するクロスドメイン適応手法を提案する。
特に、個々の領域として異なる聴診器タイプを考慮し、新しい聴診器誘導型教師付きコントラスト学習手法を提案する。
ICBHIデータセットの実験結果から,提案手法はドメイン依存性の低減とICBHIスコア61.71%の達成に有効であることが示された。
- 参考スコア(独自算出の注目度): 1.690115983364313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the remarkable advances in deep learning technology, achieving
satisfactory performance in lung sound classification remains a challenge due
to the scarcity of available data. Moreover, the respiratory sound samples are
collected from a variety of electronic stethoscopes, which could potentially
introduce biases into the trained models. When a significant distribution shift
occurs within the test dataset or in a practical scenario, it can substantially
decrease the performance. To tackle this issue, we introduce cross-domain
adaptation techniques, which transfer the knowledge from a source domain to a
distinct target domain. In particular, by considering different stethoscope
types as individual domains, we propose a novel stethoscope-guided supervised
contrastive learning approach. This method can mitigate any domain-related
disparities and thus enables the model to distinguish respiratory sounds of the
recording variation of the stethoscope. The experimental results on the ICBHI
dataset demonstrate that the proposed methods are effective in reducing the
domain dependency and achieving the ICBHI Score of 61.71%, which is a
significant improvement of 2.16% over the baseline.
- Abstract(参考訳): 深層学習技術の飛躍的な進歩にもかかわらず、利用可能なデータの不足のため、肺音分類における十分な性能を達成することは依然として課題である。
さらに、呼吸音サンプルは様々な電子聴診器から収集され、訓練されたモデルにバイアスをもたらす可能性がある。
テストデータセット内や実際のシナリオで重要な分散シフトが発生した場合、パフォーマンスが大幅に低下する可能性がある。
この問題に取り組むため,我々は,知識をソースドメインから別のターゲットドメインに転送するクロスドメイン適応手法を導入する。
特に,異なる聴診器タイプを個別の領域として考慮し,新しい聴診器誘導教師付き比較学習手法を提案する。
この方法では、ドメイン関連の相違を緩和し、聴診器の記録変動の呼吸音を識別することができる。
icbhiデータセットの実験的結果は、提案手法がドメイン依存度を減少させ、61.71%のicbhiスコアを達成するのに有効であることを示し、これはベースラインに対して2.16%の大幅な改善である。
関連論文リスト
- Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers [14.144599890583308]
本稿では,大規模コークスデータセットを用いた自己教師型学習と教師型学習を併用したコークス病分類手法を提案する。
提案手法は、新型コロナウイルスの診断のための2つのベンチマークデータセットと、AUROC 92.5% の COPD/non-COPD 分類のためのプロプライエタリデータセットにおいて、先行技術よりも一貫して優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-08-28T09:40:40Z) - Domain Adaptive Lung Nodule Detection in X-ray Image [3.660022474436894]
本稿では,教師の自己学習と対照的学習を活用した肺結節検出のための新しい領域適応手法を提案する。
まず、結節表現を洗練させ、結節と背景の区別を強化する階層的コントラスト学習戦略を提案する。
第2に,NDL(nodule-level domain-invariant feature learning)モジュールを導入した。
論文 参考訳(メタデータ) (2024-07-28T04:46:55Z) - Domain Adaptation of Echocardiography Segmentation Via Reinforcement Learning [4.850478245721347]
我々はRL4Segを紹介した。RL4Segは革新的な強化学習フレームワークで、ターゲットドメインに専門的な注釈付きデータセットを組み込む必要がなくなる。
RL4Segは1万枚の未診断2D心エコー画像のターゲットデータセットを用いて、ターゲットドメインから220名の専門家検証対象のサブセットに対して99%の解剖学的妥当性を達成している。
論文 参考訳(メタデータ) (2024-06-25T19:26:39Z) - Adversarial Fine-tuning using Generated Respiratory Sound to Address
Class Imbalance [1.3686993145787067]
本稿では,条件付きニューラルボコーダとして音声拡散モデルを用いて,不均衡な呼吸音データを増やすための簡単なアプローチを提案する。
また, 合成音と実呼吸音の特徴を整合させ, 呼吸音の分類性能を向上させるために, 簡易かつ効果的な対向微調整法を実証した。
論文 参考訳(メタデータ) (2023-11-11T05:02:54Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
自動医用画像解析の成功は、大規模かつ専門家による注釈付きトレーニングセットに依存する。
非教師なしドメイン適応(UDA)はラベル付きデータ収集の負担を軽減するための有望なアプローチである。
本稿では,2つの技術的課題に新しい視点から対処する統一的手法である最適化トラジェクトリ蒸留を提案する。
論文 参考訳(メタデータ) (2023-07-27T08:58:05Z) - Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on
Respiratory Sound Classification [19.180927437627282]
本稿では,潜在空間における混合表現を識別するために,新規かつ効果的なパッチ・ミクス・コントラスト学習を提案する。
提案手法はICBHIデータセット上での最先端性能を実現し,4.08%の改善により先行先行スコアを上回った。
論文 参考訳(メタデータ) (2023-05-23T13:04:07Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
本研究では,識別情報を捕捉し,同時に過度に適合する問題を緩和する様々な手法について検討する。
我々は、ディープニューラルネットワークにおける従来の非線形アクティベーションを置き換えるために、Max Feature Map法を採用する。
2つのデータ拡張方法と2つの深いアーキテクチャモジュールは、システムの過度な適合を減らし、差別的なパワーを維持するためにさらに検討されている。
論文 参考訳(メタデータ) (2020-07-09T08:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。