論文の概要: Topology-Matching Normalizing Flows for Out-of-Distribution Detection in
Robot Learning
- arxiv url: http://arxiv.org/abs/2311.06481v1
- Date: Sat, 11 Nov 2023 05:09:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 18:20:15.295166
- Title: Topology-Matching Normalizing Flows for Out-of-Distribution Detection in
Robot Learning
- Title(参考訳): ロボット学習における分布外検出のためのトポロジーマッチング正規化フロー
- Authors: Jianxiang Feng, Jongseok Lee, Simon Geisler, Stephan Gunnemann,
Rudolph Triebel
- Abstract要約: 正規化フロー(NFs)を用いた密度推定に基づくOOD検出のための強力なアプローチ
本研究では,このトポロジ的ミスマッチを回避するために,情報理論の目的を学習した表現型クラス条件ベース分布を用いて,このトポロジ的ミスマッチを回避する。
本研究では, 密度推定と2次元物体検出ベンチマークにおいて, 広範囲なベースラインと比較して優れた結果を示す。
- 参考スコア(独自算出の注目度): 38.97407602443256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To facilitate reliable deployments of autonomous robots in the real world,
Out-of-Distribution (OOD) detection capabilities are often required. A powerful
approach for OOD detection is based on density estimation with Normalizing
Flows (NFs). However, we find that prior work with NFs attempts to match the
complex target distribution topologically with naive base distributions leading
to adverse implications. In this work, we circumvent this topological mismatch
using an expressive class-conditional base distribution trained with an
information-theoretic objective to match the required topology. The proposed
method enjoys the merits of wide compatibility with existing learned models
without any performance degradation and minimum computation overhead while
enhancing OOD detection capabilities. We demonstrate superior results in
density estimation and 2D object detection benchmarks in comparison with
extensive baselines. Moreover, we showcase the applicability of the method with
a real-robot deployment.
- Abstract(参考訳): 現実の自律ロボットの信頼性の高い展開を容易にするためには、アウト・オブ・ディストリビューション(OOD)検出機能が必要であることが多い。
OOD検出のための強力なアプローチは、正規化フロー(NF)を用いた密度推定に基づいている。
しかし,NFsを用いた先行的な研究は,複雑な対象分布とナイーブ基底分布とをトポロジカルに一致させることで,悪影響が生じる。
本研究では,この位相的ミスマッチを,要求されるトポロジーに適合する情報論的目的を訓練した表現型クラス条件ベース分布を用いて回避する。
提案手法は,OOD検出能力を向上しつつ,性能劣化や計算オーバーヘッドの最小化を伴わず,既存の学習モデルとの広範な互換性を享受できる。
本研究では,密度推定と2次元物体検出ベンチマークにおいて,広範なベースラインと比較し,優れた結果を示す。
さらに,本手法の適用性を実ロボットで示す。
関連論文リスト
- OAL: Enhancing OOD Detection Using Latent Diffusion [5.357756138014614]
Outlier Aware Learning (OAL)フレームワークは、潜伏空間で直接OODトレーニングデータを合成する。
In-Distribution (ID) と収集したOOD特徴の区別を増幅する相互情報に基づくコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T11:01:43Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - Feature Density Estimation for Out-of-Distribution Detection via Normalizing Flows [7.91363551513361]
アウト・オブ・ディストリビューション(OOD)検出は,オープンワールド環境での学習システムの安全な配置において重要な課題である。
我々は、OODサンプル選択における研究者バイアスを回避するため、OODデータへの露出を必要としない、完全に教師なしのアプローチを提案する。
これは、任意の事前訓練されたモデルに適用可能なポストホック法であり、密度閾値による分布外検出を行うために、軽量な補助正規化フローモデルを訓練する。
論文 参考訳(メタデータ) (2024-02-09T16:51:01Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - How to Exploit Hyperspherical Embeddings for Out-of-Distribution
Detection? [22.519572587827213]
CIDERは、OOD検出に超球面埋め込みを利用する表現学習フレームワークである。
CIDERは優れたパフォーマンスを確立し、FPR95では19.36%で最新のライバルを上回った。
論文 参考訳(メタデータ) (2022-03-08T23:44:01Z) - WOOD: Wasserstein-based Out-of-Distribution Detection [6.163329453024915]
ディープ・ニューラル・ネットワークに基づく分類器のトレーニングデータは、通常同じ分布からサンプリングされる。
トレーニングサンプルから遠く離れた分布からテストサンプルの一部を引き出すと、トレーニングされたニューラルネットワークはこれらのOODサンプルに対して高い信頼性の予測を行う傾向にある。
本稿では,これらの課題を克服するため,Wasserstein を用いたアウト・オブ・ディストリビューション検出(WOOD)手法を提案する。
論文 参考訳(メタデータ) (2021-12-13T02:35:15Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。