論文の概要: OAL: Enhancing OOD Detection Using Latent Diffusion
- arxiv url: http://arxiv.org/abs/2406.16525v2
- Date: Fri, 22 Nov 2024 16:04:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:17:04.740453
- Title: OAL: Enhancing OOD Detection Using Latent Diffusion
- Title(参考訳): OAL:潜伏拡散を用いたOOD検出の強化
- Authors: Heng Gao, Zhuolin He, Shoumeng Qiu, Jian Pu,
- Abstract要約: Outlier Aware Learning (OAL)フレームワークは、潜伏空間で直接OODトレーニングデータを合成する。
In-Distribution (ID) と収集したOOD特徴の区別を増幅する相互情報に基づくコントラスト学習手法を提案する。
- 参考スコア(独自算出の注目度): 5.357756138014614
- License:
- Abstract: Numerous Out-of-Distribution (OOD) detection algorithms have been developed to identify unknown samples or objects in real-world model deployments. Outlier Exposure (OE) algorithms, a subset of these methods, typically employ auxiliary datasets to train OOD detectors, enhancing the reliability of their predictions. While previous methods have leveraged Stable Diffusion (SD) to generate pixel-space outliers, these can complicate network optimization. We propose an Outlier Aware Learning (OAL) framework, which synthesizes OOD training data directly in the latent space. To regularize the model's decision boundary, we introduce a mutual information-based contrastive learning approach that amplifies the distinction between In-Distribution (ID) and collected OOD features. The efficacy of this contrastive learning technique is supported by both theoretical analysis and empirical results. Furthermore, we integrate knowledge distillation into our framework to preserve in-distribution classification accuracy. The combined application of contrastive learning and knowledge distillation substantially improves OOD detection performance, enabling OAL to outperform other OE methods by a considerable margin. Source code is available at: \url{https://github.com/HengGao12/OAL}.
- Abstract(参考訳): 現実世界のモデル展開における未知のサンプルやオブジェクトを識別するために、OOD(Out-of-Distribution)検出アルゴリズムが多数開発されている。
これらの手法のサブセットであるoutlier Exposure (OE)アルゴリズムは、一般的にOOD検出器のトレーニングに補助データセットを使用し、予測の信頼性を高める。
以前の手法では、安定拡散(SD)を利用してピクセル空間の外れ値を生成するが、これらはネットワーク最適化を複雑にすることができる。
本稿では,OOD学習データを潜在空間に直接合成する,OALフレームワークを提案する。
モデルの決定境界を正規化するために,情報に基づくコントラスト学習手法を導入する。
この対照的な学習手法の有効性は、理論的解析と経験的結果の両方によって支えられている。
さらに,本フレームワークに知識蒸留を統合し,分布内分類精度を維持する。
コントラスト学習と知識蒸留の併用により、OOD検出性能が大幅に向上し、OALは他のOE法よりも大幅に向上する。
ソースコードは: \url{https://github.com/HengGao12/OAL}.comで入手できる。
関連論文リスト
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
アウト・オブ・ディストリビューション(OOD)オブジェクト検出は、オープンセットのOODデータがないため、難しい課題である。
テキストから画像への生成モデルの最近の進歩に触発されて,大規模オープンセットデータを用いて訓練された生成モデルがOODサンプルを合成する可能性について検討した。
SyncOODは,大規模基盤モデルの能力を活用するシンプルなデータキュレーション手法である。
論文 参考訳(メタデータ) (2024-09-08T17:28:22Z) - FlowCon: Out-of-Distribution Detection using Flow-Based Contrastive Learning [0.0]
我々は新しい密度に基づくOOD検出技術であるtextitFlowConを紹介する。
我々の主な革新は、正規化フローの特性と教師付きコントラスト学習を効率的に組み合わせることである。
経験的評価は、一般的な視覚データセットにまたがる手法の性能向上を示す。
論文 参考訳(メタデータ) (2024-07-03T20:33:56Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
入力のよりリッチな表現を生成する最終完全連結層にクラスプロジェクションの摂動を導入する。
我々はOpenOODフレームワークの複数のベンチマークで最先端のOOD検出結果を得る。
論文 参考訳(メタデータ) (2024-05-27T13:38:28Z) - Deep Metric Learning-Based Out-of-Distribution Detection with Synthetic Outlier Exposure [0.0]
Denoising Diffusion Probabilistic Models (DDPM) を用いたOODデータ生成のためのラベル混合手法を提案する。
実験の結果,メトリック学習に基づく損失関数はソフトマックスよりも優れていた。
提案手法は従来のOOD検出指標において高いベースラインを達成している。
論文 参考訳(メタデータ) (2024-05-01T16:58:22Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
アウト・オブ・ディストリビューション(OOD)検出は、予測者が有効な予測を行うことができないOODデータをイン・ディストリビューション(ID)データとして識別する。
通常、OODパターンを識別できる予測器をトレーニングするために、実際のアウト・オブ・ディストリビューション(OOD)データを収集するのは困難である。
本稿では,Auxiliary Task-based OOD Learning (ATOL) というデータ生成に基づく学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-06T16:26:52Z) - Diversified Outlier Exposure for Out-of-Distribution Detection via
Informative Extrapolation [110.34982764201689]
Out-of-Distribution(OOD)検出は、現実のアプリケーションに信頼性の高い機械学習モデルをデプロイするために重要である。
近年, 外部曝露によるOOD検出に有意な結果が得られた。
本稿では,補助外乱量に基づく情報外挿による効果的なOOD検出のための新しい枠組み,すなわちDivOE(Diversified Outlier Exposure)を提案する。
論文 参考訳(メタデータ) (2023-10-21T07:16:09Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
外周露光(OE)は、オフ・オブ・ディストリビューション(OOD)検出において強力である。
我々は,未確認のOOD状況に対してモデルの性能を良くする,新しいOEベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-09T04:36:38Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
Igeoodは, オフ・オブ・ディストリビューション(OOD)サンプルを効果的に検出する手法である。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、機械学習モデルにさまざまなアクセス権を持つ。
Igeoodは、さまざまなネットワークアーキテクチャやデータセットにおいて、競合する最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T11:26:35Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
アウト・オブ・ディストリビューション(OOD)検出は、野生にデプロイされた機械学習モデルにとって重要である。
近年の手法では,OOD検出の改善のために補助外乱データを用いてモデルを正規化している。
我々は、自然にIDとOODの両方のサンプルで構成される野生の混合データを活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T15:38:39Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。