Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering
- URL: http://arxiv.org/abs/2311.06503v3
- Date: Mon, 10 Jun 2024 09:06:10 GMT
- Title: Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering
- Authors: Yichi Zhang, Zhuo Chen, Yin Fang, Yanxi Lu, Fangming Li, Wen Zhang, Huajun Chen,
- Abstract summary: Large language models (LLMs) are deployed to real scenarios for domain-specific question answering (QA)
This paper introduces Knowledgeable Preference AlignmenT (KnowPAT), which constructs two kinds of preference sets to tackle the two issues.
Besides, we design a new alignment objective to align the LLM preference with different human preferences uniformly.
- Score: 35.2883028685345
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deploying large language models (LLMs) to real scenarios for domain-specific question answering (QA) is a key thrust for LLM applications, which poses numerous challenges, especially in ensuring that responses are both accommodating to user requirements and appropriately leveraging domain-specific knowledge bases. They are the two major difficulties for LLM application as vanilla fine-tuning falls short of addressing. Combining these requirements, we conceive of them as the requirement for the model's preference to be harmoniously aligned with humans'. Thus, we introduce Knowledgeable Preference AlignmenT (KnowPAT), which constructs two kinds of preference sets to tackle the two issues. Besides, we design a new alignment objective to align the LLM preference with different human preferences uniformly, aiming to optimize LLM performance in real-world, domain-specific QA settings. Adequate experiments and comprehensive comparisons with 15 baseline methods illustrate that our KnowPAT is a superior pipeline for real-scenario domain-specific QA with LLMs.
Related papers
- SimRAG: Self-Improving Retrieval-Augmented Generation for Adapting Large Language Models to Specialized Domains [45.349645606978434]
Retrieval-augmented generation (RAG) enhances the question-answering abilities of large language models (LLMs)
However, adapting general-purpose RAG systems to specialized fields such as science and medicine poses unique challenges due to distribution shifts and limited access to domain-specific data.
We propose SimRAG, a self-training approach that equips the LLM with joint capabilities of question answering and question generation for domain adaptation.
arXiv Detail & Related papers (2024-10-23T15:24:16Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
We investigate Extractive Question Answering (EQA) with Large Language Models (LLMs) under domain drift.
We devise a series of experiments to empirically explain the performance gap.
arXiv Detail & Related papers (2024-09-27T05:06:43Z) - Towards Hierarchical Multi-Agent Workflows for Zero-Shot Prompt Optimization [19.200989737492595]
Large language models (LLMs) have shown great progress in responding to user questions.
The quality of LLM outputs heavily depends on the prompt design, where a good prompt might enable the LLM to answer a very challenging question correctly.
We propose a hierarchy of LLMs, first constructing a prompt with precise instructions and accurate wording in a hierarchical manner, and then using this prompt to generate the final answer to the user query.
arXiv Detail & Related papers (2024-05-30T17:05:45Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
Large Language Models (LLMs) are versatile and capable of addressing a diverse range of tasks.
Previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs.
We present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models.
arXiv Detail & Related papers (2024-03-27T08:57:21Z) - PANDA: Preference Adaptation for Enhancing Domain-Specific Abilities of LLMs [49.32067576992511]
Large language models often fall short of the performance achieved by domain-specific state-of-the-art models.
One potential approach to enhance domain-specific capabilities of LLMs involves fine-tuning them using corresponding datasets.
We propose Preference Adaptation for Enhancing Domain-specific Abilities of LLMs (PANDA)
Our experimental results reveal that PANDA significantly enhances the domain-specific ability of LLMs on text classification and interactive decision tasks.
arXiv Detail & Related papers (2024-02-20T09:02:55Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - A Self-enhancement Approach for Domain-specific Chatbot Training via
Knowledge Mining and Digest [62.63606958140248]
Large Language Models (LLMs) often encounter challenges when dealing with intricate and knowledge-demanding queries in specific domains.
This paper introduces a novel approach to enhance LLMs by effectively extracting the relevant knowledge from domain-specific textual sources.
We train a knowledge miner, namely LLMiner, which autonomously extracts Question-Answer pairs from relevant documents.
arXiv Detail & Related papers (2023-11-17T16:09:10Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.