Emergence and enhancement of feedback control induced quantum
entanglement
- URL: http://arxiv.org/abs/2311.06578v3
- Date: Mon, 18 Dec 2023 10:35:55 GMT
- Title: Emergence and enhancement of feedback control induced quantum
entanglement
- Authors: M. Amazioug, D. Dutykh, M. Asjad
- Abstract summary: We present a scheme for controlling quantum correlations by applying feedback to the cavity mode that exits a cavity.
In a hybrid cavity magnomechanical system with a movable mirror, the proposed coherent feedback scheme allows for the enhancement of both bipartite and tripartite quantum correlations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a scheme for controlling quantum correlations by applying feedback
to the cavity mode that exits a cavity while interacting with a mechanical
oscillator and magnons. In a hybrid cavity magnomechanical system with a
movable mirror, the proposed coherent feedback scheme allows for the
enhancement of both bipartite and tripartite quantum correlations. Moreover, we
demonstrate that the resulting entanglement remains robust with respect to
ambient temperatures in the presence of coherent feedback control.
Related papers
- Enhancing One-Way Steering and Non-Classical Correlations in Magnomechanics via Coherent Feedback [0.0]
coherent feedback is used to enhance quantum correlations in a cavity magnonmechanical system.
Results show that adjusting the beam splitter's reflective parameter can significantly enhance quantum correlations.
We conclude by validating the system and demonstrating its ability to detect entanglement.
arXiv Detail & Related papers (2024-09-21T13:30:39Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Coherent feedback control of quantum correlations in cavity
magnomechanical system with magnon squeezing [0.0]
We address a scheme to enhance the quantum correlations in cavity opto-magnomechanical system by using the coherent feedback loop in the presence of magnon squeezing.
We also study the Einstein-Podolsky-Rosen steering and one-way steering in the presence of thermal effects without imposing additional conditions of asymmetric losses or noises in the subsystems.
arXiv Detail & Related papers (2023-02-16T20:18:57Z) - Strong mechanical squeezing in a microcavity with double quantum wells [0.0]
In a hybrid quantum system composed of two quantum wells placed inside a cavity with a moving end mirror pumped by bichromatic coherent light, we address the formation of squeezed states of a mechanical resonator.
We show that the robustness of this squeezing against thermal fluctuations is important for practical applications of such systems.
arXiv Detail & Related papers (2023-02-01T16:00:55Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Dynamical phases and quantum correlations in an emitter-waveguide system
with feedback [0.0]
We investigate the creation and control of emergent collective behavior and quantum correlations using feedback in an emitter-waveguide system.
We show the emergence of a time-crystal phase, the transition to which is controlled by the feedback strength.
Our study corroborates the potential of integrated emitter-waveguide systems for the exploration of collective quantum phenomena.
arXiv Detail & Related papers (2021-02-04T16:27:20Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Non-Markovian decoherence dynamics of the hybrid quantum system with a
cavity strongly coupling to a spin ensemble: a master equation approach [1.8492669447784602]
We show how the decoherence induced by the inhomogeneous broadening is suppressed in the strong-coupling regime.
We also investigate the two-time correlations in this system to further show how quantum fluctuations manifest quantum memory.
arXiv Detail & Related papers (2020-06-29T14:13:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.