論文の概要: VT-Former: An Exploratory Study on Vehicle Trajectory Prediction for Highway Surveillance through Graph Isomorphism and Transformer
- arxiv url: http://arxiv.org/abs/2311.06623v4
- Date: Tue, 23 Apr 2024 15:56:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 19:45:27.591168
- Title: VT-Former: An Exploratory Study on Vehicle Trajectory Prediction for Highway Surveillance through Graph Isomorphism and Transformer
- Title(参考訳): VT-Former:グラフアイソモーフィズムと変圧器による道路サーベイランスの車両軌道予測に関する探索的研究
- Authors: Armin Danesh Pazho, Ghazal Alinezhad Noghre, Vinit Katariya, Hamed Tabkhi,
- Abstract要約: 車両軌道予測(VTP)は、車両の過去と現在の動きに基づいて将来の位置を予測することを目的としている。
VTPは道路安全の重要な要素であり、交通管理、事故防止、ワークゾーン安全性、エネルギー最適化などの応用を支援する。
本稿では,高速道路の安全と監視のための新しいトランスフォーマーベースのVTPアプローチであるVT-Formerを紹介する。
- 参考スコア(独自算出の注目度): 2.812395851874055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enhancing roadway safety has become an essential computer vision focus area for Intelligent Transportation Systems (ITS). As a part of ITS, Vehicle Trajectory Prediction (VTP) aims to forecast a vehicle's future positions based on its past and current movements. VTP is a pivotal element for road safety, aiding in applications such as traffic management, accident prevention, work-zone safety, and energy optimization. While most works in this field focus on autonomous driving, with the growing number of surveillance cameras, another sub-field emerges for surveillance VTP with its own set of challenges. In this paper, we introduce VT-Former, a novel transformer-based VTP approach for highway safety and surveillance. In addition to utilizing transformers to capture long-range temporal patterns, a new Graph Attentive Tokenization (GAT) module has been proposed to capture intricate social interactions among vehicles. This study seeks to explore both the advantages and the limitations inherent in combining transformer architecture with graphs for VTP. Our investigation, conducted across three benchmark datasets from diverse surveillance viewpoints, showcases the State-of-the-Art (SotA) or comparable performance of VT-Former in predicting vehicle trajectories. This study underscores the potential of VT-Former and its architecture, opening new avenues for future research and exploration.
- Abstract(参考訳): 道路の安全性を高めることは、インテリジェントトランスポーテーションシステム(ITS)にとって重要なコンピュータビジョン分野となっている。
ITSの一部として、車両軌道予測(VTP)は、過去の動きと現在の動きに基づいて、車両の将来の位置を予測することを目的としている。
VTPは道路安全の重要な要素であり、交通管理、事故防止、ワークゾーン安全性、エネルギー最適化などの応用を支援する。
この分野での作業の多くは自動運転に重点を置いているが、監視カメラの増加とともに、別のサブフィールドが独自の課題を抱えて監視VTPに現れている。
本稿では,高速道路の安全と監視のための新しいトランスフォーマーベースのVTPアプローチであるVT-Formerを紹介する。
長距離時間パターンをキャプチャするためにトランスフォーマーを活用することに加えて、車両間の複雑な社会的相互作用をキャプチャするために、新しいグラフ注意トークン化(GAT)モジュールが提案されている。
本研究は, 変圧器アーキテクチャとVTPのグラフを組み合わせる際の利点と限界について検討する。
我々の調査は、様々な監視の観点から3つのベンチマークデータセットで実施され、車両軌道の予測において、VT-FormerのState-of-the-Art(SotA)または同等の性能を示す。
本研究は、VT-Formerとそのアーキテクチャの可能性を強調し、今後の研究と探査のための新たな道を開く。
関連論文リスト
- Tapping in a Remote Vehicle's onboard LLM to Complement the Ego Vehicle's Field-of-View [1.701722696403793]
本稿では,車載言語モデル(LLM)をタップすることで,エゴ車両の視野(FOV)と他の車両のFOVを補完する概念を提案する。
GPT-4V や GPT-4o など,ごく最近の LLM では,交通状況が極めて詳細に把握されているため,交通参加者の特定にも利用することができる。
論文 参考訳(メタデータ) (2024-08-20T12:38:34Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
本稿では,鳥の目視で道路配置と車両占有率によって形成された局所地図を再構築する新しい枠組みを提案する。
我々のモデルは1つのGPU上で25FPSで動作し、リアルタイムパノラマHDマップの再構築に有効である。
論文 参考訳(メタデータ) (2022-11-15T13:52:41Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
交通現場では、来るべき人々と出会うと、歩行者は突然回転したり、すぐに止まることがある。
このような予測不可能な軌道を予測するために、歩行者間の相互作用についての洞察を得ることができる。
本稿では,歩行者軌跡の相関関係を注意機構を用いて学習する空間的相互作用変換器(SIT)を提案する。
論文 参考訳(メタデータ) (2021-12-13T13:08:04Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Trends in Vehicle Re-identification Past, Present, and Future: A
Comprehensive Review [2.9093633827040724]
車両リアイドは、複数のカメラネットワークビューでターゲット車両オーバーオーバーラップビューにマッチします。
本稿では,各種車両のre-id技術,手法,データセット,および各種方法論の比較を包括的に記述する。
論文 参考訳(メタデータ) (2021-02-19T05:02:24Z) - SCOUT: Socially-COnsistent and UndersTandable Graph Attention Network
for Trajectory Prediction of Vehicles and VRUs [0.0]
SCOUTは、グラフとしてシーンの柔軟で汎用的な表現を使用する新しい注意ベースのグラフニューラルネットワークです。
我々は3つの異なる注意メカニズムを探索し,鳥眼視と車載都市データを用いてそのスキームをテストする。
RounDデータセットの全く新しいシナリオでテストすることにより、モデルの柔軟性と転送性を評価します。
論文 参考訳(メタデータ) (2021-02-12T06:29:28Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and
Prediction [74.42961817119283]
車両間通信(V2V)を用いて、自動運転車の知覚と運動予測性能を向上させる。
複数の車両から受信した情報をインテリジェントに集約することで、異なる視点から同じシーンを観察することができる。
論文 参考訳(メタデータ) (2020-08-17T17:58:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。