論文の概要: A Template Is All You Meme
- arxiv url: http://arxiv.org/abs/2311.06649v2
- Date: Wed, 19 Feb 2025 14:08:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:56:42.390048
- Title: A Template Is All You Meme
- Title(参考訳): テンプレートはただのミーム
- Authors: Luke Bates, Peter Ebert Christensen, Preslav Nakov, Iryna Gurevych,
- Abstract要約: 5,200以上のmemeテンプレート、それらに関する情報、および54,000のテンプレートインスタンスの例で構成された知識ベースを作成します。
ミームテンプレートのセマンティック信号を調べるために,データセット中のミームと知識ベースに含まれるベーステンプレートを距離ベースで検索することでマッチングできることを示す。
メメテンプレートの検証により,検討対象のデータセット毎の最先端性能が得られ,テンプレート性に基づく解析方法が確立された。
- 参考スコア(独自算出の注目度): 76.03172165923058
- License:
- Abstract: Templatic memes, characterized by a semantic structure adaptable to the creator's intent, represent a significant yet underexplored area within meme processing literature. With the goal of establishing a new direction for computational meme analysis, here we create a knowledge base composed of more than 5,200 meme templates, information about them, and 54,000 examples of template instances (templatic memes). To investigate the semantic signal of meme templates, we show that we can match memes in datasets to base templates contained in our knowledge base with a distance-based lookup. To demonstrate the power of meme templates, we create TSplit, a method to reorganize datasets, where a template or templatic instance can only appear in either the training or test split. Our re-split datasets enhance general meme knowledge and improve sample efficiency, leading to more robust models. Our examination of meme templates results in state-of-the-art performance for every dataset we consider, paving the way for analysis grounded in templateness.
- Abstract(参考訳): テンポラティック・ミームは、創造者の意図に適応可能な意味構造によって特徴づけられるが、ミーム処理文学の中では重要で未発見の領域である。
計算ミーム分析の新しい方向性を確立することを目的として,5,200以上のミームテンプレート,それらに関する情報,テンプレートインスタンス(テンプレートミーム)の54,000例からなる知識ベースを構築した。
ミームテンプレートのセマンティック信号を調べるために,データセット中のミームと知識ベースに含まれるベーステンプレートを距離ベースで検索することでマッチングできることを示す。
ミームテンプレートのパワーを示すために、データセットを再編成するTSplitを作成します。
我々の再分割データセットは一般的なミームの知識を高め、サンプル効率を改善し、より堅牢なモデルを生み出す。
メメテンプレートの検証により,検討対象のデータセット毎の最先端性能が得られ,テンプレート性に基づく解析方法が確立された。
関連論文リスト
- Decoding Memes: A Comparative Study of Machine Learning Models for Template Identification [0.0]
ミームテンプレート(meme template)は、ミームを作成するのに使用されるレイアウトまたはフォーマットである。
ミームのバイラル性に関する広範な研究にもかかわらず、ミームのテンプレートを自動的に識別する作業は依然として課題である。
本稿では,既存のmemeテンプレート識別手法の総合的な比較と評価を行う。
論文 参考訳(メタデータ) (2024-08-15T12:52:06Z) - XMeCap: Meme Caption Generation with Sub-Image Adaptability [53.2509590113364]
社会的な意味や文化的な詳細に深く根ざした噂は、機械にとってユニークな挑戦である。
我々は、教師付き微調整と強化学習を採用するtextscXMeCapフレームワークを紹介した。
textscXMeCapは、シングルイメージのミームの平均評価スコアが75.85で、マルチイメージのミームは66.32で、それぞれ3.71%と4.82%で最高のベースラインを上回っている。
論文 参考訳(メタデータ) (2024-07-24T10:51:46Z) - What Makes a Meme a Meme? Identifying Memes for Memetics-Aware Dataset Creation [0.9217021281095907]
マルチモーダルインターネットミームは現在、オンライン談話におけるユビキタスなフィクスチャとなっている。
ミームはミームを模倣してシンボルに変換する過程である。
我々は,ミームと非ミームコンテンツとを識別するミーム識別プロトコルを開発した。
論文 参考訳(メタデータ) (2024-07-16T15:48:36Z) - MemeMQA: Multimodal Question Answering for Memes via Rationale-Based Inferencing [53.30190591805432]
構造化された質問に対する正確な応答を求めるマルチモーダルな質問応答フレームワークであるMemeMQAを紹介する。
また,MemeMQAに対処する新しい2段階マルチモーダルフレームワークであるARSENALを提案する。
論文 参考訳(メタデータ) (2024-05-18T07:44:41Z) - Meme-ingful Analysis: Enhanced Understanding of Cyberbullying in Memes
Through Multimodal Explanations [48.82168723932981]
Em MultiBully-Exは、コード混在型サイバーいじめミームからマルチモーダルな説明を行うための最初のベンチマークデータセットである。
ミームの視覚的およびテキスト的説明のために,コントラスト言語-画像事前学習 (CLIP) アプローチが提案されている。
論文 参考訳(メタデータ) (2024-01-18T11:24:30Z) - MEMEX: Detecting Explanatory Evidence for Memes via Knowledge-Enriched
Contextualization [31.209594252045566]
本稿では,ミームと関連する文書を与えられた新しいタスクMEMEXを提案し,ミームの背景を簡潔に説明するコンテキストを掘り下げることを目的とする。
MCCをベンチマークするために,共通感覚に富んだミーム表現を用いたマルチモーダル・ニューラル・フレームワークであるMIMEと,ミームとコンテキスト間の相互モーダルなセマンティック依存関係を捉える階層的アプローチを提案する。
論文 参考訳(メタデータ) (2023-05-25T10:19:35Z) - DisinfoMeme: A Multimodal Dataset for Detecting Meme Intentionally
Spreading Out Disinformation [72.18912216025029]
偽情報ミームの検出を支援するためにDisinfoMemeを提案する。
このデータセットには、COVID-19パンデミック、Black Lives Matter運動、ベジタリアン/ベジタリアンという3つのトピックをカバーするRedditのミームが含まれている。
論文 参考訳(メタデータ) (2022-05-25T09:54:59Z) - Multi-modal application: Image Memes Generation [13.043370069398916]
エンド・ツー・エンドのエンコーダ・デコーダ・アーキテクチャ・ミーム・ジェネレータを提案する。
インターネットミームは一般的にイメージの形をとり、ミームテンプレート(画像)とキャプション(自然言語文)を組み合わせて作成される。
論文 参考訳(メタデータ) (2021-12-03T00:17:44Z) - Memes in the Wild: Assessing the Generalizability of the Hateful Memes
Challenge Dataset [47.65948529524281]
Pinterestからヘイトフルで非ヘイトフルなミームを収集して、Facebookデータセットで事前トレーニングされたモデルで、サンプル外のパフォーマンスを評価します。
1) キャプションをOCRで抽出しなければならない,2) ミームは従来のミームよりも多様であり, 会話のスクリーンショットやテキストをプレーンな背景に表示する,という2つの重要な側面がある。
論文 参考訳(メタデータ) (2021-07-09T09:04:05Z) - memeBot: Towards Automatic Image Meme Generation [24.37035046107127]
モデルはミームキャプションとミームテンプレートイメージの依存関係を学習し、新しいミームを生成する。
Twitterデータを用いた実験では、オンラインソーシャルインタラクションにおける文のミーム生成におけるモデルの有効性が示されている。
論文 参考訳(メタデータ) (2020-04-30T03:48:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。