論文の概要: What Makes a Meme a Meme? Identifying Memes for Memetics-Aware Dataset Creation
- arxiv url: http://arxiv.org/abs/2407.11861v1
- Date: Tue, 16 Jul 2024 15:48:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 14:03:36.683608
- Title: What Makes a Meme a Meme? Identifying Memes for Memetics-Aware Dataset Creation
- Title(参考訳): ミームをミームにするものは何か? メメティクスを意識したデータセット作成のためのミームを識別する
- Authors: Muzhaffar Hazman, Susan McKeever, Josephine Griffith,
- Abstract要約: マルチモーダルインターネットミームは現在、オンライン談話におけるユビキタスなフィクスチャとなっている。
ミームはミームを模倣してシンボルに変換する過程である。
我々は,ミームと非ミームコンテンツとを識別するミーム識別プロトコルを開発した。
- 参考スコア(独自算出の注目度): 0.9217021281095907
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Warning: This paper contains memes that may be offensive to some readers. Multimodal Internet Memes are now a ubiquitous fixture in online discourse. One strand of meme-based research is the classification of memes according to various affects, such as sentiment and hate, supported by manually compiled meme datasets. Understanding the unique characteristics of memes is crucial for meme classification. Unlike other user-generated content, memes spread via memetics, i.e. the process by which memes are imitated and transformed into symbols used to create new memes. In effect, there exists an ever-evolving pool of visual and linguistic symbols that underpin meme culture and are crucial to interpreting the meaning of individual memes. The current approach of training supervised learning models on static datasets, without taking memetics into account, limits the depth and accuracy of meme interpretation. We argue that meme datasets must contain genuine memes, as defined via memetics, so that effective meme classifiers can be built. In this work, we develop a meme identification protocol which distinguishes meme from non-memetic content by recognising the memetics within it. We apply our protocol to random samplings of the leading 7 meme classification datasets and observe that more than half (50. 4\%) of the evaluated samples were found to contain no signs of memetics. Our work also provides a meme typology grounded in memetics, providing the basis for more effective approaches to the interpretation of memes and the creation of meme datasets.
- Abstract(参考訳): 警告: この論文には、一部の読者にとって不快なミームが含まれている。
マルチモーダルインターネットミームは現在、オンライン談話におけるユビキタスなフィクスチャとなっている。
ミームベースの研究の柱の1つは、感情や憎悪といった様々な影響によるミームの分類であり、手動でコンパイルされたミームデータセットによって支えられている。
ミームの独特の特徴を理解することは、ミームの分類に不可欠である。
他のユーザ生成コンテンツとは異なり、ミームはミームによって拡散し、ミームが模倣され、新しいミームを作成するために使われるシンボルに変換される。
事実上、ミーム文化の基盤となり、個々のミームの意味を理解するのに不可欠である、視覚的および言語的シンボルのプールが常に存在する。
静的データセット上で教師付き学習モデルをトレーニングする現在のアプローチは、ミーム解釈の深さと精度を制限する。
ミームデータセットは、ミームによって定義された本物のミームを含まなければならないため、効果的なミーム分類器を構築することができる。
本研究では,その中のミームを認識することで,ミームと非ミームコンテンツとを識別するミーム識別プロトコルを開発する。
我々は,主要な7ミーム分類データセットのランダムサンプリングにプロトコルを適用し,その半分以上(50。
4 %) で, メメティクスの兆候は認められなかった。
我々の研究は、ミームの解釈とミームデータセットの作成に対するより効果的なアプローチの基礎となる、ミームの類型論も提供する。
関連論文リスト
- Evolver: Chain-of-Evolution Prompting to Boost Large Multimodal Models for Hateful Meme Detection [49.122777764853055]
ヘイトフルミーム検出のためのLMM(Large Multimodal Models)の可能性を探る。
提案するEvolverは,Chain-of-Evolution (CoE) Promptingを介してLMMを組み込む。
Evolverは、ステップバイステップでLMMを通してミームと理由の進化と表現のプロセスをシミュレートする。
論文 参考訳(メタデータ) (2024-07-30T17:51:44Z) - XMeCap: Meme Caption Generation with Sub-Image Adaptability [53.2509590113364]
社会的な意味や文化的な詳細に深く根ざした噂は、機械にとってユニークな挑戦である。
我々は、教師付き微調整と強化学習を採用するtextscXMeCapフレームワークを紹介した。
textscXMeCapは、シングルイメージのミームの平均評価スコアが75.85で、マルチイメージのミームは66.32で、それぞれ3.71%と4.82%で最高のベースラインを上回っている。
論文 参考訳(メタデータ) (2024-07-24T10:51:46Z) - Meme-ingful Analysis: Enhanced Understanding of Cyberbullying in Memes
Through Multimodal Explanations [48.82168723932981]
Em MultiBully-Exは、コード混在型サイバーいじめミームからマルチモーダルな説明を行うための最初のベンチマークデータセットである。
ミームの視覚的およびテキスト的説明のために,コントラスト言語-画像事前学習 (CLIP) アプローチが提案されている。
論文 参考訳(メタデータ) (2024-01-18T11:24:30Z) - A Template Is All You Meme [83.05919383106715]
我々は,54,000枚以上の画像からなる www.knowyourme.com で発見されたミームと情報の知識ベースをリリースする。
我々は、ミームテンプレートが、以前のアプローチから欠落したコンテキストでモデルを注入するのに使えると仮定する。
論文 参考訳(メタデータ) (2023-11-11T19:38:14Z) - On the Evolution of (Hateful) Memes by Means of Multimodal Contrastive
Learning [18.794226796466962]
複数の画像から視覚要素を合成したり、テキスト情報をヘイトフル画像と融合させたりすることで、ヘイトフルミームがどのように生成されるかを研究する。
4chanから抽出したデータセット上の我々のフレームワークを用いて、Happy Merchantミームの3.3K変種を見つける。
我々のフレームワークは、ヘイトフルミームの新たな変種をフラグ付けすることで、人間のモデレーターを助けることができると期待している。
論文 参考訳(メタデータ) (2022-12-13T13:38:04Z) - Detecting Harmful Memes and Their Targets [27.25262711136056]
COVID-19に関連する3,544のミームを含む最初のベンチマークデータセットであるHarMemeを紹介します。
第1段階では、ミームを非常に有害、部分的に有害、または無害とラベル付けし、第2段階では、有害ミームが示す標的の種類をさらにアノテートした。
10の単一モーダルモデルとマルチモーダルモデルによる評価結果は、両方のタスクにマルチモーダル信号を使用することの重要性を強調している。
論文 参考訳(メタデータ) (2021-09-24T17:11:42Z) - Memes in the Wild: Assessing the Generalizability of the Hateful Memes
Challenge Dataset [47.65948529524281]
Pinterestからヘイトフルで非ヘイトフルなミームを収集して、Facebookデータセットで事前トレーニングされたモデルで、サンプル外のパフォーマンスを評価します。
1) キャプションをOCRで抽出しなければならない,2) ミームは従来のミームよりも多様であり, 会話のスクリーンショットやテキストをプレーンな背景に表示する,という2つの重要な側面がある。
論文 参考訳(メタデータ) (2021-07-09T09:04:05Z) - Entropy and complexity unveil the landscape of memes evolution [105.59074436693487]
われわれは、2011年から2020年までの10年間で、Redditから200万のビジュアルミームの進化を研究した。
ミームは新たなインターネットメタ言語の一部であるという仮説を支持する。
論文 参考訳(メタデータ) (2021-05-26T07:41:09Z) - Multimodal Learning for Hateful Memes Detection [6.6881085567421605]
本稿では,画像キャプション処理をミーム検出プロセスに組み込む新しい手法を提案する。
本モデルは,Hateful Memes Detection Challengeにおける有望な結果を得る。
論文 参考訳(メタデータ) (2020-11-25T16:49:15Z) - memeBot: Towards Automatic Image Meme Generation [24.37035046107127]
モデルはミームキャプションとミームテンプレートイメージの依存関係を学習し、新しいミームを生成する。
Twitterデータを用いた実験では、オンラインソーシャルインタラクションにおける文のミーム生成におけるモデルの有効性が示されている。
論文 参考訳(メタデータ) (2020-04-30T03:48:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。