論文の概要: Automatized Self-Supervised Learning for Skin Lesion Screening
- arxiv url: http://arxiv.org/abs/2311.06691v2
- Date: Sun, 05 Jan 2025 14:25:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:04:28.370510
- Title: Automatized Self-Supervised Learning for Skin Lesion Screening
- Title(参考訳): 皮膚病変スクリーニングのための自動自己監督学習
- Authors: Vullnet Useini, Stephanie Tanadini-Lang, Quentin Lohmeyer, Mirko Meboldt, Nicolaus Andratschke, Ralph P. Braun, Javier Barranco García,
- Abstract要約: 皮膚がんの死亡率が最も高いメラノーマは、世界中で着実に増加している。
様々な専門知識を持つユーザを支援するため、人工知能(AI)意思決定支援ツールが開発された。
本ソリューションは,実世界の広視野画像からUDを識別し,特徴付ける。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Melanoma, the deadliest form of skin cancer, has seen a steady increase in incidence rates worldwide, posing a significant challenge to dermatologists. Early detection is crucial for improving patient survival rates. However, performing total body screening (TBS), i.e., identifying suspicious lesions or ugly ducklings (UDs) by visual inspection, can be challenging and often requires sound expertise in pigmented lesions. To assist users of varying expertise levels, an artificial intelligence (AI) decision support tool was developed. Our solution identifies and characterizes UDs from real-world wide-field patient images. It employs a state-of-the-art object detection algorithm to locate and isolate all skin lesions present in a patient's total body images. These lesions are then sorted based on their level of suspiciousness using a self-supervised AI approach, tailored to the specific context of the patient under examination. A clinical validation study was conducted to evaluate the tool's performance. The results demonstrated an average sensitivity of 95% for the top-10 AI-identified UDs on skin lesions selected by the majority of experts in pigmented skin lesions. The study also found that the tool increased dermatologists' confidence when formulating a diagnosis, and the average majority agreement with the top-10 AI-identified UDs reached 100% when assisted by our tool. With the development of this AI-based decision support tool, we aim to address the shortage of specialists, enable faster consultation times for patients, and demonstrate the impact and usability of AI-assisted screening. Future developments will include expanding the dataset to include histologically confirmed melanoma and validating the tool for additional body regions.
- Abstract(参考訳): メラノーマは皮膚がんで最も致命的な形態で、世界中で発生率を着実に増加させており、皮膚科医にとって大きな課題となっている。
早期発見は患者生存率の向上に不可欠である。
しかし、視覚検査によって不審な病変や不審なアヒル(UD)を識別する総体検診(TBS)は困難であり、しばしば色素性病変の健全な専門知識を必要とする。
様々な専門知識を持つユーザを支援するため、人工知能(AI)意思決定支援ツールが開発された。
本ソリューションは,実世界の広視野画像からUDを識別し,特徴付ける。
最先端のオブジェクト検出アルゴリズムを使用して、患者の全身画像に存在するすべての皮膚病変を特定し、分離する。
これらの病変は、検査中の患者の特定の状況に合わせて、自己監督型AIアプローチを用いて、不審性のレベルに基づいて分類される。
ツールの性能を評価するために臨床検査を行った。
その結果, 色素性皮膚病変の大多数が選択した皮膚病変に対して, トップ10のAI識別UDに対して平均95%の感度を示した。
また、このツールは診断を定式化する際の皮膚科医の信頼性を高め、上位10のAI識別UDとの平均的な過半数の合意は、ツールによって支援された時点で100%に達した。
このAIベースの意思決定支援ツールの開発により、専門家の不足に対処し、患者の相談時間を短縮し、AI支援スクリーニングの効果とユーザビリティを実証することを目指している。
今後は、このデータセットを組織学的に確認された黒色腫に拡張し、追加の身体領域でこのツールを検証する予定である。
関連論文リスト
- Towards Fairness in AI for Melanoma Detection: Systemic Review and Recommendations [0.0]
本研究は,2013年から2024年にかけて発行されたAIによるメラノーマ検出研究の体系的レビューと予備的分析を行う。
以上の結果から,AIはメラノーマの検出を増強するが,皮膚の色調の軽さには有意な偏りがあることが示唆された。
この研究は、すべての患者に公平で効果的なAIモデルを開発するために、多様なデータセットと堅牢な評価指標の必要性を強調している。
論文 参考訳(メタデータ) (2024-11-19T20:31:38Z) - Dermatologist-like explainable AI enhances melanoma diagnosis accuracy: eye-tracking study [1.1876787296873537]
人工知能(AI)システムは皮膚科医のメラノーマの診断精度を大幅に改善した。
これらの進歩にもかかわらず、皮膚科医がAIとXAIの両方のツールとどのように関わるかの客観的評価には、依然として重要な必要性がある。
そこで本研究では,76名の皮膚科医を対象に,XAIシステムを用いてメラノーマとネビの16例の皮膚内視鏡像の診断を行った。
論文 参考訳(メタデータ) (2024-09-20T13:08:33Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
乳がんの診断・診断における説明可能な人工知能(XAI)技術の適用について検討する。
複雑なAIモデルと実用的な医療アプリケーションの間のギャップを埋めることにおけるXAIの可能性を強調することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T18:50:03Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
説明可能な人工知能(XAI)は、AIの意思決定プロセスの解明に不可欠である。
ブラックボックス」として機能し、その理由が曖昧でアクセスできないため、誤診のリスクが高まる。
この透明性へのシフトは、単に有益であるだけでなく、医療におけるAI統合の責任を負うための重要なステップでもある。
論文 参考訳(メタデータ) (2024-03-23T02:15:23Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Dermatologist-like explainable AI enhances trust and confidence in
diagnosing melanoma [0.0]
人工知能システムがメラノーマを識別する方法における透明性の欠如は、ユーザーの受け入れに深刻な障害をもたらす。
ほとんどのXAI法は、正確に位置付けられたドメイン固有の説明を生成できないため、説明の解釈が困難である。
我々は、皮膚科医が容易に解釈できるテキストと地域に基づく説明を生成するXAIシステムを開発した。
論文 参考訳(メタデータ) (2023-03-17T17:25:55Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
我々は,肺POCUS画像からの新型コロナウイルススクリーニングに適した,高効率で自己注意型の深層畳み込みニューラルネットワーク設計であるCOVID-Net USを紹介した。
実験の結果、提案されたCOVID-Net USは、アーキテクチャの複雑さが353倍、計算の複雑さが62倍、Raspberry Piで14.3倍高速なAUCを達成できることがわかった。
リソース制約のある環境において安価な医療と人工知能を提唱するために、COVID-Net USをオープンソースにし、COVID-Netオープンソースイニシアチブの一部として公開しました。
論文 参考訳(メタデータ) (2021-08-05T16:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。