論文の概要: The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI
- arxiv url: http://arxiv.org/abs/2403.15684v1
- Date: Sat, 23 Mar 2024 02:15:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 21:32:08.118376
- Title: The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI
- Title(参考訳): 知覚の限界:XAIにおける塩分マップの不整合の分析
- Authors: Anna Stubbin, Thompson Chyrikov, Jim Zhao, Christina Chajo,
- Abstract要約: 説明可能な人工知能(XAI)は、AIの意思決定プロセスの解明に不可欠である。
ブラックボックス」として機能し、その理由が曖昧でアクセスできないため、誤診のリスクが高まる。
この透明性へのシフトは、単に有益であるだけでなく、医療におけるAI統合の責任を負うための重要なステップでもある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable artificial intelligence (XAI) plays an indispensable role in demystifying the decision-making processes of AI, especially within the healthcare industry. Clinicians rely heavily on detailed reasoning when making a diagnosis, often CT scans for specific features that distinguish between benign and malignant lesions. A comprehensive diagnostic approach includes an evaluation of imaging results, patient observations, and clinical tests. The surge in deploying deep learning models as support systems in medical diagnostics has been significant, offering advances that traditional methods could not. However, the complexity and opacity of these models present a double-edged sword. As they operate as "black boxes," with their reasoning obscured and inaccessible, there's an increased risk of misdiagnosis, which can lead to patient harm. Hence, there is a pressing need to cultivate transparency within AI systems, ensuring that the rationale behind an AI's diagnostic recommendations is clear and understandable to medical practitioners. This shift towards transparency is not just beneficial -- it's a critical step towards responsible AI integration in healthcare, ensuring that AI aids rather than hinders medical professionals in their crucial work.
- Abstract(参考訳): 説明可能な人工知能(XAI)は、AIの意思決定プロセス、特に医療業界において、欠かせない役割を担っている。
臨床医は診断の際に詳細な推論に大きく依存しており、良性病変と悪性病変を区別する特定の特徴をCTスキャンすることが多い。
包括的診断アプローチには、画像結果の評価、患者の観察、臨床検査が含まれる。
医学診断における支援システムとしてのディープラーニングモデルの展開の急激な増加は、従来の方法ではできなかった進歩をもたらしている。
しかし、これらのモデルの複雑さと不透明さは二重刃の剣である。
ブラックボックス」として機能するので、原因があいまいでアクセスできないため、誤診のリスクが高くなり、患者に危害を与えます。
したがって、AIシステム内で透明性を育む必要性が強く、AIの診断勧告の背後にある根拠が明確で、医療従事者にとって理解可能であることを保証する。
この透明性へのシフトは、単に有益であるだけでなく、医療におけるAI統合の責任を負うための重要なステップでもある。
関連論文リスト
- Dermatologist-like explainable AI enhances melanoma diagnosis accuracy: eye-tracking study [1.1876787296873537]
人工知能(AI)システムは皮膚科医のメラノーマの診断精度を大幅に改善した。
これらの進歩にもかかわらず、皮膚科医がAIとXAIの両方のツールとどのように関わるかの客観的評価には、依然として重要な必要性がある。
そこで本研究では,76名の皮膚科医を対象に,XAIシステムを用いてメラノーマとネビの16例の皮膚内視鏡像の診断を行った。
論文 参考訳(メタデータ) (2024-09-20T13:08:33Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
本研究では,畳み込みニューラルネットワーク(CNN)と説明可能な人工知能(XAI)を組み合わせて乳がんの診断を高度化するための統合フレームワークを提案する。
この方法論は、データセットの制限に対処するために、精巧なデータ前処理パイプラインと高度なデータ拡張技術を含んでいる。
本研究の焦点は,モデル予測の解釈におけるXAIの有効性を評価することである。
論文 参考訳(メタデータ) (2024-04-05T05:00:21Z) - Deciphering knee osteoarthritis diagnostic features with explainable
artificial intelligence: A systematic review [4.918419052486409]
変形性膝関節症(OA)を診断するための既存の人工知能モデルは、その透明性と解釈可能性の欠如に対して批判を浴びている。
近年,説明可能な人工知能 (XAI) がモデルの予測に自信を与える特別な技術として出現している。
本報告では膝OA診断に用いるXAI技術について紹介する。
論文 参考訳(メタデータ) (2023-08-18T08:23:47Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - XAI Renaissance: Redefining Interpretability in Medical Diagnostic
Models [0.0]
XAIルネッサンスは、医療診断モデルの解釈可能性を再定義することを目的としている。
XAI技術は、医療専門家にこれらのモデルを正確で信頼性の高い診断に理解し、信頼し、効果的に活用することを可能にする。
論文 参考訳(メタデータ) (2023-06-02T16:42:20Z) - Dermatologist-like explainable AI enhances trust and confidence in
diagnosing melanoma [0.0]
人工知能システムがメラノーマを識別する方法における透明性の欠如は、ユーザーの受け入れに深刻な障害をもたらす。
ほとんどのXAI法は、正確に位置付けられたドメイン固有の説明を生成できないため、説明の解釈が困難である。
我々は、皮膚科医が容易に解釈できるテキストと地域に基づく説明を生成するXAIシステムを開発した。
論文 参考訳(メタデータ) (2023-03-17T17:25:55Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Towards the Use of Saliency Maps for Explaining Low-Quality
Electrocardiograms to End Users [45.62380752173638]
診断に医用画像を使用する場合,画像が高品質であることが重要である。
遠隔医療において一般的な問題は、患者が診療所を退院した後にのみ、品質問題が警告されることである。
本稿では,低品質な医用画像をリアルタイムにフラグ付け,説明するためのAIシステムの開発について報告する。
論文 参考訳(メタデータ) (2022-07-06T14:53:26Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
医学診断アシスタント(MDA)は、疾患を識別するための症状を逐次調査する対話型診断エージェントを構築することを目的としている。
この研究は、因果図を利用して、MDAにおけるこれらの重要な問題に対処しようとする。
本稿では,他の記録から知識を引き出すことにより,非記録的調査に効果的に答える確率に基づく患者シミュレータを提案する。
論文 参考訳(メタデータ) (2020-03-14T02:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。