What factors influence the popularity of user-generated text in the
creative domain? A case study of book reviews
- URL: http://arxiv.org/abs/2311.06714v1
- Date: Sun, 12 Nov 2023 02:54:11 GMT
- Title: What factors influence the popularity of user-generated text in the
creative domain? A case study of book reviews
- Authors: Salim Sazzed
- Abstract summary: This study investigates a range of psychological, lexical, semantic, and readability features of book reviews to elucidate the factors underlying their perceived popularity.
We employ traditional machine learning classifiers and transformer-based fine-tuned language models with n-gram features to automatically determine review popularity.
Our findings indicate that, with the exception of a few features, most attributes do not exhibit significant differences between popular and non-popular review groups.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates a range of psychological, lexical, semantic, and
readability features of book reviews to elucidate the factors underlying their
perceived popularity. To this end, we conduct statistical analyses of various
features, including the types and frequency of opinion and emotion-conveying
terms, connectives, character mentions, word uniqueness, commonness, and
sentence structure, among others. Additionally, we utilize two readability
tests to explore whether reading ease is positively associated with review
popularity. Finally, we employ traditional machine learning classifiers and
transformer-based fine-tuned language models with n-gram features to
automatically determine review popularity. Our findings indicate that, with the
exception of a few features (e.g., review length, emotions, and word
uniqueness), most attributes do not exhibit significant differences between
popular and non-popular review groups. Furthermore, the poor performance of
machine learning classifiers using the word n-gram feature highlights the
challenges associated with determining popularity in creative domains. Overall,
our study provides insights into the factors underlying review popularity and
highlights the need for further research in this area, particularly in the
creative realm.
Related papers
- Word Importance Explains How Prompts Affect Language Model Outputs [0.7223681457195862]
This study presents a method to improve the explainability of large language models by varying individual words in prompts.
Unlike classical attention, word importance measures the impact of prompt words on arbitrarily-defined text scores.
Results show that word importance scores are closely related to the expected suffix importances for multiple scoring functions.
arXiv Detail & Related papers (2024-03-05T15:04:18Z) - Textual Stylistic Variation: Choices, Genres and Individuals [0.8057441774248633]
This chapter argues for more informed target metrics for the statistical processing of stylistic variation in text collections.
This chapter discusses variation given by genre, and contrasts it to variation occasioned by individual choice.
arXiv Detail & Related papers (2022-05-01T16:39:49Z) - Polling Latent Opinions: A Method for Computational Sociolinguistics
Using Transformer Language Models [4.874780144224057]
We use the capacity for memorization and extrapolation of Transformer Language Models to learn the linguistic behaviors of a subgroup within larger corpora of Yelp reviews.
We show that even in cases where a specific keyphrase is limited or not present at all in the training corpora, the GPT is able to accurately generate large volumes of text that have the correct sentiment.
arXiv Detail & Related papers (2022-04-15T14:33:58Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - Modeling Social Readers: Novel Tools for Addressing Reception from
Online Book Reviews [0.0]
We study the readers' distillation of the main storylines in a novel using a corpus of reviews of five popular novels.
We make three important contributions to the study of infinite vocabulary networks.
We present a new sequencing algorithm, REV2SEQ, that generates a consensus sequence of events based on partial trajectories aggregated from the reviews.
arXiv Detail & Related papers (2021-05-03T20:10:14Z) - User Factor Adaptation for User Embedding via Multitask Learning [45.56193775870044]
We treat the user interest as domains and empirically examine how the user language can vary across the user factor.
We propose a user embedding model to account for the language variability of user interests via a multitask learning framework.
The model learns user language and its variations without human supervision.
arXiv Detail & Related papers (2021-02-22T15:21:01Z) - Quantifying Learnability and Describability of Visual Concepts Emerging
in Representation Learning [91.58529629419135]
We consider how to characterise visual groupings discovered automatically by deep neural networks.
We introduce two concepts, visual learnability and describability, that can be used to quantify the interpretability of arbitrary image groupings.
arXiv Detail & Related papers (2020-10-27T18:41:49Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
A few popular metrics remain as the de facto metrics to evaluate tasks such as image captioning and machine translation.
This is partly due to ease of use, and partly because researchers expect to see them and know how to interpret them.
In this paper, we urge the community for more careful consideration of how they automatically evaluate their models.
arXiv Detail & Related papers (2020-10-26T13:57:20Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - A Unified Dual-view Model for Review Summarization and Sentiment
Classification with Inconsistency Loss [51.448615489097236]
Acquiring accurate summarization and sentiment from user reviews is an essential component of modern e-commerce platforms.
We propose a novel dual-view model that jointly improves the performance of these two tasks.
Experiment results on four real-world datasets from different domains demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2020-06-02T13:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.