論文の概要: Sharing, Teaching and Aligning: Knowledgeable Transfer Learning for
Cross-Lingual Machine Reading Comprehension
- arxiv url: http://arxiv.org/abs/2311.06758v1
- Date: Sun, 12 Nov 2023 07:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 17:07:29.319263
- Title: Sharing, Teaching and Aligning: Knowledgeable Transfer Learning for
Cross-Lingual Machine Reading Comprehension
- Title(参考訳): 共有・指導・調整:言語間機械読解理解のための知識伝達学習
- Authors: Tingfeng Cao, Chengyu Wang, Chuanqi Tan, Jun Huang, Jinhui Zhu
- Abstract要約: X-STAは言語間機械読解のための新しいアプローチである。
我々は注意深い教師を利用して、ソース言語の回答スパンをターゲットの回答出力空間に微妙に転送する。
改良されたクロスアテンションブロックとしてグラディエント・ディサンタングルド・ナレッジ・シェアリング手法を提案する。
- 参考スコア(独自算出の注目度): 32.37236167127796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In cross-lingual language understanding, machine translation is often
utilized to enhance the transferability of models across languages, either by
translating the training data from the source language to the target, or from
the target to the source to aid inference. However, in cross-lingual machine
reading comprehension (MRC), it is difficult to perform a deep level of
assistance to enhance cross-lingual transfer because of the variation of answer
span positions in different languages. In this paper, we propose X-STA, a new
approach for cross-lingual MRC. Specifically, we leverage an attentive teacher
to subtly transfer the answer spans of the source language to the answer output
space of the target. A Gradient-Disentangled Knowledge Sharing technique is
proposed as an improved cross-attention block. In addition, we force the model
to learn semantic alignments from multiple granularities and calibrate the
model outputs with teacher guidance to enhance cross-lingual transferability.
Experiments on three multi-lingual MRC datasets show the effectiveness of our
method, outperforming state-of-the-art approaches.
- Abstract(参考訳): 言語間理解において、機械翻訳は、ソース言語からターゲットへのトレーニングデータを翻訳するか、あるいは推論を支援するためにターゲットからソースへ変換することによって、言語間のモデルの転送性を高めるためにしばしば用いられる。
しかし, 言語間機械読解(MRC)では, 異なる言語における解答幅の変動のため, 言語間移動の促進に深い支援を行うことは困難である。
本稿では,言語間MRCの新しいアプローチであるX-STAを提案する。
具体的には、注意深い教師を用いて、ソース言語の回答範囲をターゲットの回答出力空間に微妙に転送する。
クロスアテンションブロックを改良したグラディエント距離知識共有手法を提案する。
さらに,複数の粒度から意味的アライメントを学習させ,教師指導によるモデル出力の校正を行い,言語間伝達性を高める。
3つの多言語MRCデータセットを用いた実験により,本手法の有効性が示された。
関連論文リスト
- CrossIn: An Efficient Instruction Tuning Approach for Cross-Lingual Knowledge Alignment [38.35458193262633]
英語中心のモデルは、通常他の言語では準最適である。
そこで本研究では,言語間命令チューニングデータの混合合成を利用したCrossInという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-18T06:20:50Z) - Promoting Generalized Cross-lingual Question Answering in Few-resource
Scenarios via Self-knowledge Distillation [2.2493846458264386]
本稿では,G-XLT(Generalized Cross-Lingual Transfer)タスクを中心に,言語間移動について検討する。
提案手法は,大規模データセットで学習した高性能多言語モデルを用いて,言語間QA転送を改善することを目的としている。
そこで我々は,mAP@k係数を導入した。
論文 参考訳(メタデータ) (2023-09-29T10:54:59Z) - Self-Augmentation Improves Zero-Shot Cross-Lingual Transfer [92.80671770992572]
言語間移動は多言語NLPにおける中心的なタスクである。
このタスクの以前の作業では、並列コーパス、バイリンガル辞書、その他の注釈付きアライメントデータを使用していた。
ゼロショットの言語間移動を改善するため, 単純で効果的なSALT法を提案する。
論文 参考訳(メタデータ) (2023-09-19T19:30:56Z) - A Simple and Effective Method to Improve Zero-Shot Cross-Lingual
Transfer Learning [6.329304732560936]
既存のゼロショットのクロスリンガル転送法は、並列コーパスやバイリンガル辞書に依存している。
意味喪失のない仮想多言語埋め込みに英語の埋め込みを移すための埋め込み・プッシュ・アテンション・プル・ロバスト・ターゲットを提案する。
論文 参考訳(メタデータ) (2022-10-18T15:36:53Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - X-METRA-ADA: Cross-lingual Meta-Transfer Learning Adaptation to Natural
Language Understanding and Question Answering [55.57776147848929]
自然言語理解のための言語横断型メタトランシュファー学習アプローチX-METRA-ADAを提案する。
我々のアプローチは、最適化に基づくメタ学習アプローチであるMAMLに適応し、新しい言語に適応することを学ぶ。
提案手法は難易度の高い微調整に優れており,ほとんどの言語において両タスクの競合性能に到達していることを示す。
論文 参考訳(メタデータ) (2021-04-20T00:13:35Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - Enhancing Answer Boundary Detection for Multilingual Machine Reading
Comprehension [86.1617182312817]
そこで我々は,句境界管理を付加するために,微調整段階における2つの補助的タスクを提案する。
混合機械読解タスクは、質問または通過を他の言語に翻訳し、言語横断の問合せペアを構築する。
Webから抽出した知識フレーズを活用する言語に依存しない知識マスキングタスク。
論文 参考訳(メタデータ) (2020-04-29T10:44:00Z) - Translation Artifacts in Cross-lingual Transfer Learning [51.66536640084888]
機械翻訳は、既存の言語間モデルに顕著な影響を与える微妙なアーティファクトを導入することができることを示す。
自然言語の推論では、前提と仮説を独立に翻訳することで、それらの間の語彙的重複を減らすことができる。
また、XNLIでは、それぞれ4.3点と2.8点の翻訳とゼロショットのアプローチを改善している。
論文 参考訳(メタデータ) (2020-04-09T17:54:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。