論文の概要: Towards probabilistic Weather Forecasting with Conditioned
Spatio-Temporal Normalizing Flows
- arxiv url: http://arxiv.org/abs/2311.06958v1
- Date: Sun, 12 Nov 2023 20:52:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 16:01:43.947064
- Title: Towards probabilistic Weather Forecasting with Conditioned
Spatio-Temporal Normalizing Flows
- Title(参考訳): 条件付き時空間正規化流を用いた確率的気象予報
- Authors: Christina Winkler
- Abstract要約: 生成的相関はマルチモーダル相関をモデル化することができ、時間分布もうまくモデル化できることが示されている。
これにより、これらは時空間予測に適した候補モデルとなり、科学の多くの分野において問題は一様である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative normalizing flows are able to model multimodal spatial
distributions, and they have been shown to model temporal correlations
successfully as well. These models provide several benefits over other types of
generative models due to their training stability, invertibility and efficiency
in sampling and inference. This makes them a suitable candidate for stochastic
spatio-temporal prediction problems, which are omnipresent in many fields of
sciences, such as earth sciences, astrophysics or molecular sciences. In this
paper, we present conditional normalizing flows for stochastic spatio-temporal
modelling. The method is evaluated on the task of daily temperature and hourly
geopotential map prediction from ERA5 datasets. Experiments show that our
method is able to capture spatio-temporal correlations and extrapolates well
beyond the time horizon used during training.
- Abstract(参考訳): 生成正規化流はマルチモーダル空間分布をモデル化することができ、時間的相関をうまくモデル化することが示されている。
これらのモデルは、トレーニングの安定性、可逆性、サンプリングと推論の効率性のために、他の種類の生成モデルよりもいくつかの利点を提供する。
これは、地球科学、天体物理学、分子科学など、多くの科学分野において一様である確率的時空間予測問題の候補となる。
本稿では,確率的時空間モデリングのための条件付き正規化フローについて述べる。
本手法は,ERA5データセットからの日中温度と時空間地図予測のタスクに基づいて評価する。
実験により,本手法は時空間相関を捉えることができ,トレーニング中に使用する時間的地平線をはるかに越えることができることがわかった。
関連論文リスト
- Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
我々は、不確実な定量化を伴うmarkPsを学習するためのスコアMAtching推定器であるSMASHを紹介する。
具体的には,スコアマッチングによるマークPsの擬似的類似度を推定することにより,正規化自由度を推定する。
提案手法の優れた性能は、事象予測と不確実性定量化の両方において広範な実験によって実証される。
論文 参考訳(メタデータ) (2023-10-25T02:37:51Z) - Benchmarking Autoregressive Conditional Diffusion Models for Turbulent
Flow Simulation [29.806100463356906]
条件付き拡散モデルに基づく自動回帰ロールアウトを利用した完全データ駆動型流体解法が有効な選択肢であるかどうかを解析する。
本研究は, トレーニング体制を超えた流れパラメータの一般化を必要としながら, 精度, 後方サンプリング, スペクトル挙動, 時間安定性について検討する。
単純な拡散に基づくアプローチであっても、トレーニング時のアンロールのような最先端の安定化技術と同等でありながら、精度と時間的安定性の観点から、複数の確立したフロー予測手法より優れていることが判明した。
論文 参考訳(メタデータ) (2023-09-04T18:01:42Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
計算負担を軽減するため,近年の大規模分散時間GPを構築した。
我々は,古気候の確率モデルを構築するために,この2倍のスパースGPをうまく利用した。
論文 参考訳(メタデータ) (2022-11-15T14:15:04Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
実世界のプロセスの相関は時間的であり、それらによって生成されたデータは空間的および時間的進化の両方を示す。
時系列モデルが数値予測の代替となる。
本研究では,分解時間予測モデルにより計算コストを低減し,精度を向上することを示した。
論文 参考訳(メタデータ) (2022-09-29T13:47:02Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Latent State Inference in a Spatiotemporal Generative Model [3.7525506486107267]
我々は、波動伝播力学を含む温度と気象の過程に注目し、普遍的な原因は空間と時間にわたって適用されると仮定する。
最近導入されたDIsed Stemporal graph Artificial Neural Architecture (DISTANA)を使用して、そのようなプロセスを学ぶ。
DISTANAは、アクティブチューニングと呼ばれる振り返り状態推論原則と組み合わせることで、位置参照型隠れ因果関係を確実に導出できることを示す。
論文 参考訳(メタデータ) (2020-09-21T12:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。