Towards Climate Variable Prediction with Conditioned Spatio-Temporal Normalizing Flows
- URL: http://arxiv.org/abs/2311.06958v3
- Date: Fri, 31 May 2024 09:58:08 GMT
- Title: Towards Climate Variable Prediction with Conditioned Spatio-Temporal Normalizing Flows
- Authors: Christina Winkler, David Rolnick,
- Abstract summary: Method is chosen due to its desired properties such as exact likelihood of predictive uncertainty estimation and efficient inference.
Findings contribute valuable insights to normalizing the field oftemporal modeling, with potential applications spanning diverse scientific disciplines.
- Score: 23.902086943159624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates how conditional normalizing flows can be applied to remote sensing data products in climate science for spatio-temporal prediction. The method is chosen due to its desired properties such as exact likelihood computation, predictive uncertainty estimation and efficient inference and sampling which facilitates faster exploration of climate scenarios. Experimental findings reveal that the conditioned spatio-temporal flow surpasses both deterministic and stochastic baselines in prolonged rollout scenarios. It exhibits stable extrapolation beyond the training time horizon for extended rollout durations. These findings contribute valuable insights to the field of spatio-temporal modeling, with potential applications spanning diverse scientific disciplines.
Related papers
- Generative assimilation and prediction for weather and climate [9.319028023682494]
We introduce Generative Assimilation and Prediction (GAP)
GAP is a unified framework for assimilation and prediction of both weather and climate.
It excels in a broad range of weather-climate related tasks, including data assimilation, seamless prediction, and climate simulation.
arXiv Detail & Related papers (2025-03-04T22:36:29Z) - A Generative Framework for Probabilistic, Spatiotemporally Coherent Downscaling of Climate Simulation [23.504915709396204]
We present a novel generative framework that uses a score-based diffusion model trained on high-resolution reanalysis data to capture the statistical properties of local weather dynamics.
We demonstrate that the model generates spatially and temporally coherent weather dynamics that align with global climate output.
arXiv Detail & Related papers (2024-12-19T19:47:35Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Benchmarking Autoregressive Conditional Diffusion Models for Turbulent
Flow Simulation [29.806100463356906]
We analyze if fully data-driven fluid solvers that utilize an autoregressive rollout based on conditional diffusion models are a viable option.
We investigate accuracy, posterior sampling, spectral behavior, and temporal stability, while requiring that methods generalize to flow parameters beyond the training regime.
We find that even simple diffusion-based approaches can outperform multiple established flow prediction methods in terms of accuracy and temporal stability, while being on par with state-of-the-art stabilization techniques like unrolling at training time.
arXiv Detail & Related papers (2023-09-04T18:01:42Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
Uncertainty quantification is crucial to decision-making.
dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts.
We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data.
arXiv Detail & Related papers (2023-06-24T22:00:06Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
The correlations of real-world processes aretemporal, and the data generated by them exhibits both spatial and temporal evolution.
Time series-based models are a viable alternative to numerical forecasts.
We show that decompositiontemporal prediction models reduced computational costs while improving accuracy.
arXiv Detail & Related papers (2022-09-29T13:47:02Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data.
In this work, we consider the time-series data as a random realization from a nonlinear state-space model.
We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings.
arXiv Detail & Related papers (2021-06-10T21:49:23Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Latent State Inference in a Spatiotemporal Generative Model [3.7525506486107267]
We focus on temperature and weather processes, including wave propagation dynamics, for which we assume that universal causes apply throughout space and time.
A recently introduced DIsed Stemporal graph graph artificial Neural Architecture (DISTANA) is used and enhanced to learn such processes.
We show that DISTANA, when combined with a retrospective latent state inference principle called active tuning, can reliably derive location-respective hidden causal factors.
arXiv Detail & Related papers (2020-09-21T12:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.