論文の概要: Teach me with a Whisper: Enhancing Large Language Models for Analyzing
Spoken Transcripts using Speech Embeddings
- arxiv url: http://arxiv.org/abs/2311.07014v1
- Date: Mon, 13 Nov 2023 01:53:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 16:06:45.092237
- Title: Teach me with a Whisper: Enhancing Large Language Models for Analyzing
Spoken Transcripts using Speech Embeddings
- Title(参考訳): ウィスパーで教える:音声埋め込みを用いた音声転写解析のための大規模言語モデルの構築
- Authors: Fatema Hasan, Yulong Li, James Foulds, Shimei Pan, Bishwaranjan
Bhattacharjee
- Abstract要約: 本稿では,音声データを利用した言語モデルの学習手法を提案する。
これにより、テスト時のオーディオ処理オーバーヘッドを回避しつつ、音声書き起こしを解析するための言語モデルが改善される。
本実験では, 従来の言語モデルに対して, 音声書き起こし解析のタスクにおいて一貫した改善が達成された。
- 参考スコア(独自算出の注目度): 8.660203441911554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech data has rich acoustic and paralinguistic information with important
cues for understanding a speaker's tone, emotion, and intent, yet traditional
large language models such as BERT do not incorporate this information. There
has been an increased interest in multi-modal language models leveraging audio
and/or visual information and text. However, current multi-modal language
models require both text and audio/visual data streams during inference/test
time. In this work, we propose a methodology for training language models
leveraging spoken language audio data but without requiring the audio stream
during prediction time. This leads to an improved language model for analyzing
spoken transcripts while avoiding an audio processing overhead at test time. We
achieve this via an audio-language knowledge distillation framework, where we
transfer acoustic and paralinguistic information from a pre-trained speech
embedding (OpenAI Whisper) teacher model to help train a student language model
on an audio-text dataset. In our experiments, the student model achieves
consistent improvement over traditional language models on tasks analyzing
spoken transcripts.
- Abstract(参考訳): 音声データは、話者のトーン、感情、意図を理解するための重要な手がかりを持つ豊富な音響的・パラ言語的な情報を持っているが、BERTのような伝統的な大言語モデルは、この情報を組み込んでいない。
音声や視覚情報やテキストを活用したマルチモーダル言語モデルへの関心が高まっている。
しかし、現在のマルチモーダル言語モデルは、推論/テスト時にテキストとオーディオ/視覚データストリームの両方を必要とする。
本研究では,予測時間に音声ストリームを必要とせず,音声言語音声データを利用した言語モデルの訓練手法を提案する。
これにより、テスト時のオーディオ処理オーバーヘッドを回避しつつ、音声書き起こしを解析するための言語モデルが改善される。
そこでは,事前学習した音声埋め込み(OpenAI Whisper)教師モデルから音響およびパラ言語情報を伝達し,音声テキストデータセット上で学習者の言語モデルを訓練する。
本実験では, 従来の言語モデルに対して, 音声書き起こし解析のタスクにおいて一貫した改善を実現する。
関連論文リスト
- Enhancing Low-Resource Language and Instruction Following Capabilities of Audio Language Models [13.855545744177586]
本稿では,タイ語を用いた未保存言語における既存の音声言語モデルの性能について検討する。
多言語バックボーン上に構築されているにもかかわらず、音声言語モデルは言語間の創発能力を示すものではない。
本稿では,音声理解と音声指示追従機能を単一統一モデルに統合する。
論文 参考訳(メタデータ) (2024-09-17T09:04:03Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
本稿では,音声理解・生成のための大規模言語モデルであるAudioPaLMを紹介する。
AudioPaLMはテキストベースの言語モデルと音声ベースの言語モデルを融合する。
音声認識や音声音声翻訳などの応用により、テキストと音声を処理および生成することができる。
論文 参考訳(メタデータ) (2023-06-22T14:37:54Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
既存の多言語wav2vec 2.0モデルを新しい言語に適用する可能性を検討する。
この結果から, 継続事前学習がwav2vec 2.0モデルを新しい言語に適応させる最も効果的な方法であることが示唆された。
関連言語の種類や類似した音韻特性を持つ非関連言語で事前訓練されたモデルが利用可能である場合,その言語からの付加データを用いた多言語微調整は,音声認識性能に肯定的な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-01-18T03:57:53Z) - WAVPROMPT: Towards Few-Shot Spoken Language Understanding with Frozen
Language Models [57.557319372969495]
大量のテキストで事前訓練された大規模自動回帰言語モデルは、新しい自然言語タスクを実行するという印象的な能力を示している。
近年の研究では、エンコーダを訓練し、画像のエンコードを埋め込みにすることで、このような数発の学習能力をテキスト画像設定にまで拡張できることが示されている。
そこで我々は,wav2vecモデルを微調整して,言語モデルによって理解された音声埋め込みのシーケンスを生成する,新しい音声理解フレームワークWavPromptを提案する。
論文 参考訳(メタデータ) (2022-03-29T19:08:55Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
複数の言語をサポートするエンドツーエンドシステムを開発した。
我々は、事前訓練された多言語自然言語処理モデルからの知識を利用する。
論文 参考訳(メタデータ) (2021-09-28T04:43:11Z) - Wav-BERT: Cooperative Acoustic and Linguistic Representation Learning
for Low-Resource Speech Recognition [159.9312272042253]
Wav-BERTは、協調的な音響および言語表現学習法である。
我々は、事前訓練された音響モデル(wav2vec 2.0)と言語モデル(BERT)をエンドツーエンドのトレーニング可能なフレームワークに統合する。
論文 参考訳(メタデータ) (2021-09-19T16:39:22Z) - Continual-wav2vec2: an Application of Continual Learning for
Self-Supervised Automatic Speech Recognition [0.23872611575805824]
自己教師付き学習(SSL)を用いた複数言語における音声表現の連続学習法を提案する。
Wav2vecモデルは、事前トレーニングフェーズで生オーディオ上でSSLを実行し、アノテートされた少数のデータに対して微調整を行う。
新しい言語タスクの事前学習を高速化するために、継続学習からのアイデアを、以前のタスクから知識を伝達するために使用します。
論文 参考訳(メタデータ) (2021-07-26T10:39:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。