論文の概要: Baichuan-Audio: A Unified Framework for End-to-End Speech Interaction
- arxiv url: http://arxiv.org/abs/2502.17239v1
- Date: Mon, 24 Feb 2025 15:16:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:45.409815
- Title: Baichuan-Audio: A Unified Framework for End-to-End Speech Interaction
- Title(参考訳): Baichuan-Audio:エンドツーエンド音声対話のための統一フレームワーク
- Authors: Tianpeng Li, Jun Liu, Tao Zhang, Yuanbo Fang, Da Pan, Mingrui Wang, Zheng Liang, Zehuan Li, Mingan Lin, Guosheng Dong, Jianhua Xu, Haoze Sun, Zenan Zhou, Weipeng Chen,
- Abstract要約: Baichuan-Audioは、音声理解と生成をシームレスに統合するエンドツーエンドのオーディオ大言語モデルである。
テキスト誘導されたアライメントされた音声生成機構を備え、理解能力と生成能力の両方でリアルタイムな音声対話を可能にする。
- 参考スコア(独自算出の注目度): 9.101978573666546
- License:
- Abstract: We introduce Baichuan-Audio, an end-to-end audio large language model that seamlessly integrates audio understanding and generation. It features a text-guided aligned speech generation mechanism, enabling real-time speech interaction with both comprehension and generation capabilities. Baichuan-Audio leverages a pre-trained ASR model, followed by multi-codebook discretization of speech at a frame rate of 12.5 Hz. This multi-codebook setup ensures that speech tokens retain both semantic and acoustic information. To further enhance modeling, an independent audio head is employed to process audio tokens, effectively capturing their unique characteristics. To mitigate the loss of intelligence during pre-training and preserve the original capabilities of the LLM, we propose a two-stage pre-training strategy that maintains language understanding while enhancing audio modeling. Following alignment, the model excels in real-time speech-based conversation and exhibits outstanding question-answering capabilities, demonstrating its versatility and efficiency. The proposed model demonstrates superior performance in real-time spoken dialogue and exhibits strong question-answering abilities. Our code, model and training data are available at https://github.com/baichuan-inc/Baichuan-Audio
- Abstract(参考訳): 音声理解と生成をシームレスに統合するエンドツーエンドの音声大言語モデルであるBaichuan-Audioを紹介する。
テキスト誘導されたアライメントされた音声生成機構を備え、理解能力と生成能力の両方でリアルタイムな音声対話を可能にする。
Baichuan-Audio は事前訓練された ASR モデルを利用し、次いで12.5Hz のフレームレートで音声のマルチコード識別を行う。
このマルチコードブック設定により、音声トークンが意味情報と音響情報の両方を保持することが保証される。
モデリングをさらに強化するため、独立したオーディオヘッドを用いて音声トークンを処理し、その固有の特徴を効果的にキャプチャする。
LLMの本来の能力の維持と事前学習におけるインテリジェンスの喪失を軽減するため,音声モデリングの強化を図りながら言語理解を維持する2段階の事前学習戦略を提案する。
アライメント後、モデルはリアルタイム音声ベースの会話に優れ、優れた質問応答能力を示し、その汎用性と効率を実証する。
提案モデルは,リアルタイム音声対話において優れた性能を示し,強力な質問応答能力を示す。
私たちのコード、モデル、トレーニングデータはhttps://github.com/baichuan-inc/Baichuan-Audioで公開されています。
関連論文リスト
- SALMONN-omni: A Codec-free LLM for Full-duplex Speech Understanding and Generation [17.56310064245171]
SALMON-Omni(サルモン・オムニ)は、発話中に発声した音声を同時に聴くことができる音声理解・生成モデルである。
SALMON-Omniは、ターンテイキング、バージイン、エコーキャンセルのシナリオの管理に長けており、完全な対話型AIシステムの堅牢なプロトタイプとしての可能性を確立している。
論文 参考訳(メタデータ) (2024-11-27T08:38:57Z) - Improving Audio Codec-based Zero-Shot Text-to-Speech Synthesis with Multi-Modal Context and Large Language Model [11.62674351793]
複数の拡張を伴ってコンテキスト特徴を適応する新しい音声ベースのTSモデルを提案する。
Qformerの成功に触発されて,マルチモーダルなコンテキスト強化Qformerを提案する。
提案手法は,様々な状況のTSシナリオにおいて,ベースラインよりも優れる。
論文 参考訳(メタデータ) (2024-06-06T03:06:45Z) - SALMONN: Towards Generic Hearing Abilities for Large Language Models [24.73033723114979]
音声音声言語音楽オープンニューラルネットワークSALMONNを提案する。
事前訓練されたテキストベースの大規模言語モデル(LLM)と音声および音声エンコーダを単一のマルチモーダルモデルに統合することによって構築される。
これは、そのタイプの最初のモデルであり、汎用的な聴覚能力を持つAIへのステップと見なすことができる。
論文 参考訳(メタデータ) (2023-10-20T05:41:57Z) - AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining [46.22290575167155]
本稿では, 音声, 音楽, 音響効果生成のための同じ学習手法を用いた枠組みを提案する。
私たちのフレームワークでは、LOA(Language of Audio)と呼ばれる音声の一般的な表現を導入しています。
論文 参考訳(メタデータ) (2023-08-10T17:55:13Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
本稿では,音声理解・生成のための大規模言語モデルであるAudioPaLMを紹介する。
AudioPaLMはテキストベースの言語モデルと音声ベースの言語モデルを融合する。
音声認識や音声音声翻訳などの応用により、テキストと音声を処理および生成することができる。
論文 参考訳(メタデータ) (2023-06-22T14:37:54Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
本稿では,キャプションの音響モダリティの可能性をフル活用することを目的とした音声視覚フレームワークを提案する。
本稿では,音声とビデオ間の情報交換を改善するため,新たなローカル・グローバル融合機構を提案する。
論文 参考訳(メタデータ) (2023-06-21T20:54:52Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
VATLM (Visual-Audio-Text Language Model) を用いたクロスモーダル表現学習フレームワークを提案する。
提案したVATLMは、モダリティに依存しない情報をモデル化するために、統一されたバックボーンネットワークを使用する。
これら3つのモダリティを1つの共有セマンティック空間に統合するために、VATLMは統一トークンのマスク付き予測タスクで最適化される。
論文 参考訳(メタデータ) (2022-11-21T09:10:10Z) - AudioLM: a Language Modeling Approach to Audio Generation [59.19364975706805]
本稿では,長期的整合性を有する高品質オーディオ生成フレームワークであるAudioLMを紹介する。
本稿では,既存の音声トークンが,再建品質と長期構造との間に異なるトレードオフをもたらすことを示す。
我々は,コヒーレントピアノ音楽の継続を生成することによって,我々のアプローチが音声を超えてどのように拡張されるかを実証する。
論文 参考訳(メタデータ) (2022-09-07T13:40:08Z) - Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement
by Re-Synthesis [67.73554826428762]
本稿では,AR/VRにおける高忠実度通信のための新しい音声・視覚音声強調フレームワークを提案する。
提案手法は音声・視覚音声の手がかりを利用してニューラル音声のコードを生成することで,ノイズ信号からクリーンでリアルな音声を効率的に合成する。
論文 参考訳(メタデータ) (2022-03-31T17:57:10Z) - WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech
Processing [102.45426364965887]
そこで本研究では,フルスタックダウンストリーム音声タスクを解決するための,事前学習型モデルWavLMを提案する。
WavLMはHuBERTフレームワークに基づいて構築されており、音声コンテンツモデリングと話者アイデンティティ保存の両方に重点を置いている。
トレーニングデータセットを60k時間から94k時間までの公開オーディオデータにスケールアップし、そのトレーニング手順を最適化して表現抽出を改善する。
論文 参考訳(メタデータ) (2021-10-26T17:55:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。