論文の概要: ExpNote: Black-box Large Language Models are Better Task Solvers with Experience Notebook
- arxiv url: http://arxiv.org/abs/2311.07032v2
- Date: Mon, 12 Aug 2024 12:11:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 00:38:36.502912
- Title: ExpNote: Black-box Large Language Models are Better Task Solvers with Experience Notebook
- Title(参考訳): ExpNote: エクスペリエンスノートブックによるブラックボックスの大規模言語モデルの改善
- Authors: Wangtao Sun, Xuanqing Yu, Shizhu He, Jun Zhao, Kang Liu,
- Abstract要約: 我々は、ブラックボックスのLCMが慣れないタスクに適応するのに役立つ自動化フレームワークExpNoteを提案する。
我々は,複数のタスクに対するExpNoteの評価を行い,提案手法がブラックボックスLLMの性能を大幅に向上することを示した。
- 参考スコア(独自算出の注目度): 22.386864304549285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Black-box Large Language Models (LLMs) have shown great power in solving various tasks and are considered general problem solvers. However, LLMs still fail in many specific tasks although understand the task instruction. In this paper, we focus on the problem of boosting the ability of black-box LLMs to solve downstream tasks. We propose ExpNote, an automated framework to help LLMs better adapt to unfamiliar tasks through reflecting and noting experiences from training data and retrieving them from external memory during testing. We evaluate ExpNote on multiple tasks and the experimental results demonstrate that the proposed method significantly improves the performance of black-box LLMs. The data and code are available at https://github.com/forangel2014/ExpNote
- Abstract(参考訳): Black-box Large Language Models (LLM) は様々なタスクを解く上で大きな力を示しており、一般的な問題解決者と見なされている。
しかし、LSMはタスク命令を理解しながら、多くの特定のタスクで失敗する。
本稿では,下流の課題を解決するためのブラックボックスLLMの能力向上に焦点をあてる。
テスト中、トレーニングデータから経験を反映し、通知し、それらを外部メモリから取り出すことによって、LLMが慣れないタスクに適応するのに役立つ自動化フレームワークであるExpNoteを提案する。
我々は,複数のタスクに対するExpNoteの評価を行い,提案手法がブラックボックスLLMの性能を大幅に向上することを示した。
データとコードはhttps://github.com/forangel2014/ExpNoteで公開されている。
関連論文リスト
- LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMは、人間が扱いやすいようないくつかの基本的なタスク、例えば単語トラウベリーの文字数rを数えるのに苦労する。
我々は,高度な数学的およびコーディング推論能力の伝達可能性について,特殊なLCMから単純なカウントタスクまでの測定を行う。
微調整や文脈内学習といった戦略と比較すると、係り受け推論はLLMのタスクをより知覚するのに役立つ最も堅牢で効率的な方法であることがわかる。
論文 参考訳(メタデータ) (2024-10-18T04:17:16Z) - Rethinking VLMs and LLMs for Image Classification [6.550471260627169]
大きな言語モデル(LLM)は、新しい機能を実現するために、Visual Language Models(VLM)と統合されつつある。
オブジェクト認識やシーン認識では,LLMを使わないVLMの方が,VLMよりも優れた性能が得られることを示す。
本稿では,視覚的タスクをタスクに適したモデルに効率的にルーティングする,比較的小さなLCMを含む軽量な修正法を提案する。
論文 参考訳(メタデータ) (2024-10-03T23:40:21Z) - CUTE: Measuring LLMs' Understanding of Their Tokens [54.70665106141121]
大きな言語モデル(LLM)は、様々なタスクにおいて顕著なパフォーマンスを示す。
LLMはどの程度の間、正書法情報を学ぶことができるのか?
LLMの正書法知識をテストするために設計されたタスクの集合を特徴とする新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2024-09-23T18:27:03Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - MLLMReID: Multimodal Large Language Model-based Person Re-identification [14.68436005777866]
MLLM(Multimodal large language model)は多くのタスクにおいて満足な結果を得た。
本稿では,ReIDの課題に適合させる方法について検討する。
論文 参考訳(メタデータ) (2024-01-24T03:07:26Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて印象的な機能を示している。
情報検索(IR)タスクへのそれらの適用は、自然言語における多くのIR固有の概念の頻繁な発生のため、いまだに困難である。
我々は,3つの基本IRカテゴリにまたがる20のタスクを含む新しいインストラクションチューニングデータセット InterS を導入する。
論文 参考訳(メタデータ) (2024-01-12T12:10:28Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
マルチモーダルな大言語モデル (MLLM) が注目されている。
この作業は、LLMがより視覚的な言語に関連したタスクに取り組むことを可能にすることを目的としている。
InfMLLMは、最先端(SOTA)パフォーマンスまたは最近のMLLMに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-12T09:58:16Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
本稿では,LLMに翻訳学習を教えるために,サンプルを用いた新しいフレームワークを提案する。
我々のアプローチは、正しい翻訳例と間違った翻訳例をモデルに提示し、好みの損失を使ってモデルの学習をガイドすることである。
本研究は,翻訳タスクのための微調整LDMの新しい視点を提供し,高品質な翻訳を実現するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2023-07-10T08:15:40Z) - Multi-Task Instruction Tuning of LLaMa for Specific Scenarios: A
Preliminary Study on Writing Assistance [60.40541387785977]
小さな基礎モデルは、命令駆動データを用いて微調整された場合、多様なタスクに対処する際、顕著な習熟度を示すことができる。
本研究は, 汎用的な指導よりも, 1つないし数つの特定のタスクに主眼を置いている, 実践的な問題設定について検討する。
実験結果から,命令データに対する微調整LLaMAは,タスクの記述能力を大幅に向上することが示された。
論文 参考訳(メタデータ) (2023-05-22T16:56:44Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。