論文の概要: CUTE: Measuring LLMs' Understanding of Their Tokens
- arxiv url: http://arxiv.org/abs/2409.15452v2
- Date: Wed, 2 Oct 2024 14:35:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 19:43:38.340677
- Title: CUTE: Measuring LLMs' Understanding of Their Tokens
- Title(参考訳): CUTE:LLMの知識を計測する
- Authors: Lukas Edman, Helmut Schmid, Alexander Fraser,
- Abstract要約: 大きな言語モデル(LLM)は、様々なタスクにおいて顕著なパフォーマンスを示す。
LLMはどの程度の間、正書法情報を学ぶことができるのか?
LLMの正書法知識をテストするために設計されたタスクの集合を特徴とする新しいベンチマークを提案する。
- 参考スコア(独自算出の注目度): 54.70665106141121
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) show remarkable performance on a wide variety of tasks. Most LLMs split text into multi-character tokens and process them as atomic units without direct access to individual characters. This raises the question: To what extent can LLMs learn orthographic information? To answer this, we propose a new benchmark, CUTE, which features a collection of tasks designed to test the orthographic knowledge of LLMs. We evaluate popular LLMs on CUTE, finding that most of them seem to know the spelling of their tokens, yet fail to use this information effectively to manipulate text, calling into question how much of this knowledge is generalizable.
- Abstract(参考訳): 大きな言語モデル(LLM)は、様々なタスクにおいて顕著なパフォーマンスを示す。
ほとんどのLCMはテキストを複数文字のトークンに分割し、個々の文字に直接アクセスせずに原子単位として処理する。
LLMはどの程度の間、正書法情報を学ぶことができるのか?
そこで我々は,LLMの正書法知識をテストするために設計されたタスクの集合を特徴とする新しいベンチマークCUTEを提案する。
CUTE 上での人気 LLM を評価したところ,その多くがトークンの綴りを知っているように思われるが,この情報を効果的にテキスト操作に用いておらず,どの程度の知識が一般化可能かという疑問が投げかけられている。
関連論文リスト
- On Unsupervised Prompt Learning for Classification with Black-box Language Models [71.60563181678323]
大規模言語モデル(LLM)は、テキスト形式学習問題において顕著な成功を収めた。
LLMは、熟練した人間のアノテータよりも品質の高いデータセットをラベル付けすることができる。
本稿では,ブラックボックス LLM を用いた分類のための教師なしのプロンプト学習を提案する。
論文 参考訳(メタデータ) (2024-10-04T03:39:28Z) - LLMs' Understanding of Natural Language Revealed [0.0]
大規模言語モデル(LLM)は、大規模言語におけるボトムアップ、データ駆動のリバースエンジニアリングにおける大規模な実験の結果である。
私たちはLLMの言語理解能力、彼らが想定する砦をテストすることに重点を置きます。
論文 参考訳(メタデータ) (2024-07-29T01:21:11Z) - Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens [21.61634020256455]
変換器をベースとした大規模言語モデル(LLM)は、長期のコンテキストをモデル化する際に性能が低下する。
本研究では,LLMが深呼吸を可能とし,個々のテキストチャンクに含まれる情報を要約する簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-06-16T15:50:10Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
LLM(Large Language Models)は、幻覚と呼ばれる不正確な出力を生成する。
本稿では,トークンから得られる4つの数値的特徴と,他の評価者から得られる語彙的確率を用いた教師付き学習手法を提案する。
この方法は有望な結果をもたらし、3つの異なるベンチマークで複数のタスクで最先端の結果を上回る。
論文 参考訳(メタデータ) (2024-05-30T03:00:47Z) - When LLMs Meet Cunning Texts: A Fallacy Understanding Benchmark for Large Language Models [59.84769254832941]
本稿では,人間が理解し易いが,理解し難い文を含むFaLlacy Understanding Benchmark (FLUB)を提案する。
具体的には、FLUBが焦点を絞ったcunningテキストは、主に、実際のインターネット環境から収集されたトリッキーでユーモラスで誤解を招くテキストで構成されている。
FLUBに基づいて,複数の代表および先進LLMの性能について検討する。
論文 参考訳(メタデータ) (2024-02-16T22:12:53Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Enabling Large Language Models to Learn from Rules [99.16680531261987]
私たちは、人間がルールから学習することで、新しいタスクや知識を別の方法で学習できることにインスピレーションを受けています。
まず, LLMの強い文脈内能力を用いて, テキスト規則から知識を抽出する規則蒸留法を提案する。
実験の結果, LLMをルールから学習させることは, サンプルサイズと一般化能力の両方において, サンプルベース学習よりもはるかに効率的であることがわかった。
論文 参考訳(メタデータ) (2023-11-15T11:42:41Z) - Pre-training LLMs using human-like development data corpus [3.5757761767474876]
我々は,子どもが見るのとほぼ同じ数のトークンを用いて,文脈的単語表現を学習する能力について,LLM(Large Language Models)を事前訓練し評価する。
異なるアーキテクチャで、エポック間のパフォーマンスの変化を評価し、タスクの厳密で厳密なトラックに対する事前トレーニングメトリクスを報告します。
論文 参考訳(メタデータ) (2023-11-08T13:13:23Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
マルチモーダル言語モデル(MLLM)は、マルチモーダルタスクを実行するために強力なLLMに依存している。
本稿では,MLLM 評価ベンチマーク MME について述べる。
知覚能力と認知能力の両方を合計14のサブタスクで測定する。
論文 参考訳(メタデータ) (2023-06-23T09:22:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。