Dynamic neural network with memristive CIM and CAM for 2D and 3D vision
- URL: http://arxiv.org/abs/2407.08990v1
- Date: Fri, 12 Jul 2024 04:55:57 GMT
- Title: Dynamic neural network with memristive CIM and CAM for 2D and 3D vision
- Authors: Yue Zhang, Woyu Zhang, Shaocong Wang, Ning Lin, Yifei Yu, Yangu He, Bo Wang, Hao Jiang, Peng Lin, Xiaoxin Xu, Xiaojuan Qi, Zhongrui Wang, Xumeng Zhang, Dashan Shang, Qi Liu, Kwang-Ting Cheng, Ming Liu,
- Abstract summary: We propose a semantic memory-based dynamic neural network (DNN) using memristor.
The network associates incoming data with the past experience stored as semantic vectors.
We validate our co-designs, using a 40nm memristor macro, on ResNet and PointNet++ for classifying images and 3D points from the MNIST and ModelNet datasets.
- Score: 57.6208980140268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The brain is dynamic, associative and efficient. It reconfigures by associating the inputs with past experiences, with fused memory and processing. In contrast, AI models are static, unable to associate inputs with past experiences, and run on digital computers with physically separated memory and processing. We propose a hardware-software co-design, a semantic memory-based dynamic neural network (DNN) using memristor. The network associates incoming data with the past experience stored as semantic vectors. The network and the semantic memory are physically implemented on noise-robust ternary memristor-based Computing-In-Memory (CIM) and Content-Addressable Memory (CAM) circuits, respectively. We validate our co-designs, using a 40nm memristor macro, on ResNet and PointNet++ for classifying images and 3D points from the MNIST and ModelNet datasets, which not only achieves accuracy on par with software but also a 48.1% and 15.9% reduction in computational budget. Moreover, it delivers a 77.6% and 93.3% reduction in energy consumption.
Related papers
- Topology Optimization of Random Memristors for Input-Aware Dynamic SNN [44.38472635536787]
We introduce pruning optimization for input-aware dynamic memristive spiking neural network (PRIME)
Signal representation-wise, PRIME employs leaky integrate-and-fire neurons to emulate the brain's inherent spiking mechanism.
For reconfigurability, inspired by the brain's dynamic adjustment of computational depth, PRIME employs an input-aware dynamic early stop policy.
arXiv Detail & Related papers (2024-07-26T09:35:02Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
Current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency.
We propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion.
We experimentally validate our solution with 180 nm resistive memory in-memory computing macros.
arXiv Detail & Related papers (2024-04-08T16:34:35Z) - Memory-Efficient Reversible Spiking Neural Networks [8.05761813203348]
Spiking neural networks (SNNs) are potential competitors to artificial neural networks (ANNs)
SNNs require much more memory than ANNs, which impedes the training of deeper SNN models.
We propose the reversible spiking neural network to reduce the memory cost of intermediate activations and membrane potentials during training.
arXiv Detail & Related papers (2023-12-13T06:39:49Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - Robust High-dimensional Memory-augmented Neural Networks [13.82206983716435]
Memory-augmented neural networks enhance neural networks with an explicit memory to overcome these issues.
Access to this explicit memory occurs via soft read and write operations involving every individual memory entry.
We propose a robust architecture that employs a computational memory unit as the explicit memory performing analog in-memory computation on high-dimensional (HD) vectors.
arXiv Detail & Related papers (2020-10-05T12:01:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.