論文の概要: Few Shot Learning for the Classification of Confocal Laser
Endomicroscopy Images of Head and Neck Tumors
- arxiv url: http://arxiv.org/abs/2311.07216v1
- Date: Mon, 13 Nov 2023 10:17:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 14:49:49.410277
- Title: Few Shot Learning for the Classification of Confocal Laser
Endomicroscopy Images of Head and Neck Tumors
- Title(参考訳): 頭頸部腫瘍の共焦点レーザー内視鏡像の分類のためのショット学習
- Authors: Marc Aubreville, Zhaoya Pan, Matti Sievert, Jonas Ammeling, Jonathan
Ganz, Nicolai Oetter, Florian Stelzle, Ann-Kathrin Frenken, Katharina
Breininger, and Miguel Goncalves
- Abstract要約: CLE画像の解剖学的領域への一般化に向けた4つの一般的な数個のショット学習手法の評価を行った。
5例の鼻腔腫瘍 (SNT) 像と, 11例の声帯腫瘍 (VF) 像について, クロスバリデーション法を用いて検討した。
- 参考スコア(独自算出の注目度): 0.33384431000910975
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The surgical removal of head and neck tumors requires safe margins, which are
usually confirmed intraoperatively by means of frozen sections. This method is,
in itself, an oversampling procedure, which has a relatively low sensitivity
compared to the definitive tissue analysis on paraffin-embedded sections.
Confocal laser endomicroscopy (CLE) is an in-vivo imaging technique that has
shown its potential in the live optical biopsy of tissue. An automated analysis
of this notoriously difficult to interpret modality would help surgeons.
However, the images of CLE show a wide variability of patterns, caused both by
individual factors but also, and most strongly, by the anatomical structures of
the imaged tissue, making it a challenging pattern recognition task. In this
work, we evaluate four popular few shot learning (FSL) methods towards their
capability of generalizing to unseen anatomical domains in CLE images. We
evaluate this on images of sinunasal tumors (SNT) from five patients and on
images of the vocal folds (VF) from 11 patients using a cross-validation
scheme. The best respective approach reached a median accuracy of 79.6% on the
rather homogeneous VF dataset, but only of 61.6% for the highly diverse SNT
dataset. Our results indicate that FSL on CLE images is viable, but strongly
affected by the number of patients, as well as the diversity of anatomical
patterns.
- Abstract(参考訳): 頭頸部腫瘍の外科的切除には安全なマージンが必要であり、通常は術中凍結切開により術中確認される。
この方法自体はオーバーサンプリング法であり、パラフィン埋め込み部位における決定的な組織分析と比較して比較的感度が低い。
共焦点レーザー内視鏡(英語版) (CLE) は、生体内イメージング技術であり、組織の生検でその可能性を示している。
モダリティの解釈が難しいことで有名なこの自動分析は、外科医に役立ちます。
しかし、CLEの画像は、個々の要因だけでなく、最も強く、画像化された組織の解剖学的構造によって引き起こされるパターンの多様性を示しており、パターン認識の課題となっている。
そこで本研究では,CLE画像の解剖学的領域を一般化するための4つのFSL法の評価を行った。
5例の鼻腔腫瘍 (SNT) 像と, 11例の声帯腫瘍 (VF) 像について, クロスバリデーション法を用いて検討した。
最良のアプローチは、比較的均一なVFデータセットでは79.6%の中央値に達したが、非常に多様なSNTデータセットでは61.6%しかなかった。
以上の結果より, CLE画像上のFSLは有効であるが, 患者数, 解剖学的パターンの多様性に強く影響されていることが示唆された。
関連論文リスト
- Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - A Cascaded Approach for ultraly High Performance Lesion Detection and
False Positive Removal in Liver CT Scans [15.352636778576171]
肝臓がんは世界中で高い死亡率と死亡率を持っている。
CT画像における肝病変の自動検出と分類は、臨床ワークフローを改善する可能性がある。
本研究では,多相CT画像のためのマルチオブジェクトラベリングツールをカスタマイズする。
論文 参考訳(メタデータ) (2023-06-28T09:11:34Z) - Intra-operative Brain Tumor Detection with Deep Learning-Optimized
Hyperspectral Imaging [37.21885467891782]
グリオーマ(内因性脳腫瘍)の手術は、病変の浸潤性により困難である。
リアルタイム, 術中, ラベルフリー, 広視野の道具は使用できない。
術中指導の可能性を秘めた癌切除のための深層学習型診断ツールを構築した。
論文 参考訳(メタデータ) (2023-02-06T15:52:03Z) - FetReg2021: A Challenge on Placental Vessel Segmentation and
Registration in Fetoscopy [52.3219875147181]
2-Twin Transfusion Syndrome (TTTS) に対するレーザー光凝固法が広く採用されている。
このプロシージャは、視野が限られたこと、フェトスコープの操作性が悪いこと、視認性が悪いこと、照明の変動性のために特に困難である。
コンピュータ支援介入(CAI)は、シーン内の重要な構造を特定し、ビデオモザイクを通して胎児の視野を広げることで、外科医に意思決定支援と文脈認識を提供する。
7つのチームがこの課題に参加し、そのモデルパフォーマンスを、6フェットから658ピクセルの注釈付き画像の見当たらないテストデータセットで評価した。
論文 参考訳(メタデータ) (2022-06-24T23:44:42Z) - Image translation of Ultrasound to Pseudo Anatomical Display Using
Artificial Intelligence [0.0]
CycleGANは、各ドメインプロパティを個別に学習し、クロスドメインサイクルの一貫性を強制するために使用された。
生成された擬似解剖画像は、より明確な境界定義と明瞭なコントラストで、病変の視覚的識別を改善する。
論文 参考訳(メタデータ) (2022-02-16T13:31:49Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
ダイナミックコントラストCT(Dynamic contrast Computed Tomography)のための完全自動多段階肝腫瘍評価フレームワークを提案する。
本システムでは, 腫瘍提案検出, 腫瘍採取, 原発部位の選択, 深部テクスチャに基づく腫瘍評価の4段階からなる。
論文 参考訳(メタデータ) (2020-06-28T19:55:34Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Segmentation of Cellular Patterns in Confocal Images of Melanocytic
Lesions in vivo via a Multiscale Encoder-Decoder Network (MED-Net) [2.0487455621441377]
マルチスケールデコーダネットワーク(MED-Net)は,パターンのクラスに定量的なラベル付けを行う。
メラノサイト病変の117個の反射共焦点顕微鏡(RCM)モザイクの非重畳分割について,本モデルを訓練・試験した。
論文 参考訳(メタデータ) (2020-01-03T22:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。