Towards Transferring Tactile-based Continuous Force Control Policies
from Simulation to Robot
- URL: http://arxiv.org/abs/2311.07245v1
- Date: Mon, 13 Nov 2023 11:29:06 GMT
- Title: Towards Transferring Tactile-based Continuous Force Control Policies
from Simulation to Robot
- Authors: Luca Lach, Robert Haschke, Davide Tateo, Jan Peters, Helge Ritter,
J\'ulia Borr\`as, Carme Torras
- Abstract summary: grasp force control aims to manipulate objects safely by limiting the amount of force exerted on the object.
Prior works have either hand-modeled their force controllers, employed model-based approaches, or have not shown sim-to-real transfer.
We propose a model-free deep reinforcement learning approach trained in simulation and then transferred to the robot without further fine-tuning.
- Score: 19.789369416528604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of tactile sensors in robotics has sparked many ideas on how
robots can leverage direct contact measurements of their environment
interactions to improve manipulation tasks. An important line of research in
this regard is that of grasp force control, which aims to manipulate objects
safely by limiting the amount of force exerted on the object. While prior works
have either hand-modeled their force controllers, employed model-based
approaches, or have not shown sim-to-real transfer, we propose a model-free
deep reinforcement learning approach trained in simulation and then transferred
to the robot without further fine-tuning. We therefore present a simulation
environment that produces realistic normal forces, which we use to train
continuous force control policies. An evaluation in which we compare against a
baseline and perform an ablation study shows that our approach outperforms the
hand-modeled baseline and that our proposed inductive bias and domain
randomization facilitate sim-to-real transfer. Code, models, and supplementary
videos are available on https://sites.google.com/view/rl-force-ctrl
Related papers
- Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - Learning Bipedal Walking for Humanoids with Current Feedback [5.429166905724048]
We present an approach for overcoming the sim2real gap issue for humanoid robots arising from inaccurate torque-tracking at the actuator level.
Our approach successfully trains a unified, end-to-end policy in simulation that can be deployed on a real HRP-5P humanoid robot to achieve bipedal locomotion.
arXiv Detail & Related papers (2023-03-07T08:16:46Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces.
We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space.
NDPs outperform the prior state-of-the-art in terms of either efficiency or performance across several robotic control tasks.
arXiv Detail & Related papers (2020-12-04T18:59:32Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.