MetaSymNet: A Tree-like Symbol Network with Adaptive Architecture and Activation Functions
- URL: http://arxiv.org/abs/2311.07326v2
- Date: Thu, 19 Dec 2024 11:41:28 GMT
- Title: MetaSymNet: A Tree-like Symbol Network with Adaptive Architecture and Activation Functions
- Authors: Yanjie Li, Weijun Li, Lina Yu, Min Wu, Jinyi Liu, Wenqiang Li, Meilan Hao, Shu Wei, Yusong Deng,
- Abstract summary: We propose MetaSymNet, a novel neural network that adjusts its structure in real-time, allowing for both expansion and contraction.<n>We evaluate MetaSymNet's performance against four state-of-the-art symbolic regression algorithms across more than 10 public datasets.
- Score: 12.344379563265395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mathematical formulas serve as the means of communication between humans and nature, encapsulating the operational laws governing natural phenomena. The concise formulation of these laws is a crucial objective in scientific research and an important challenge for artificial intelligence (AI). While traditional artificial neural networks (MLP) excel at data fitting, they often yield uninterpretable black box results that hinder our understanding of the relationship between variables x and predicted values y. Moreover, the fixed network architecture in MLP often gives rise to redundancy in both network structure and parameters. To address these issues, we propose MetaSymNet, a novel neural network that dynamically adjusts its structure in real-time, allowing for both expansion and contraction. This adaptive network employs the PANGU meta function as its activation function, which is a unique type capable of evolving into various basic functions during training to compose mathematical formulas tailored to specific needs. We then evolve the neural network into a concise, interpretable mathematical expression. To evaluate MetaSymNet's performance, we compare it with four state-of-the-art symbolic regression algorithms across more than 10 public datasets comprising 222 formulas. Our experimental results demonstrate that our algorithm outperforms others consistently regardless of noise presence or absence. Furthermore, we assess MetaSymNet against MLP and SVM regarding their fitting ability and extrapolation capability, these are two essential aspects of machine learning algorithms. The findings reveal that our algorithm excels in both areas. Finally, we compared MetaSymNet with MLP using iterative pruning in network structure complexity. The results show that MetaSymNet's network structure complexity is obviously less than MLP under the same goodness of fit.
Related papers
- Combining Causal Models for More Accurate Abstractions of Neural Networks [10.115827125021438]
Causal abstraction provides a precise notion of when a network implements an algorithm.
A typical problem in practical settings is that the algorithm is not an entirely faithful abstraction of the network.
We propose a solution where we combine different simple high-level models to produce a more faithful representation of the network.
arXiv Detail & Related papers (2025-03-14T14:14:43Z) - Complexity-Aware Training of Deep Neural Networks for Optimal Structure Discovery [0.0]
We propose a novel algorithm for combined unit and layer pruning of deep neural networks that functions during training and without requiring a pre-trained network to apply.<n>Our algorithm optimally trades-off learning accuracy and pruning levels while balancing layer vs. unit pruning and computational vs. parameter complexity.<n>We show that the proposed algorithm converges to solutions of the optimization problem corresponding to networks.
arXiv Detail & Related papers (2024-11-14T02:00:22Z) - Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
We discuss the semantic loss, which injects knowledge about such structure, defined symbolically, into training.
It is agnostic to the arrangement of the symbols, and depends only on the semantics expressed thereby.
It can be combined with both discriminative and generative neural models.
arXiv Detail & Related papers (2024-05-12T22:18:25Z) - A foundation for exact binarized morphological neural networks [2.8925699537310137]
Training and running deep neural networks (NNs) often demands a lot of computation and energy-intensive specialized hardware.
One way to reduce the computation and power cost is to use binary weight NNs, but these are hard to train because the sign function has a non-smooth gradient.
We present a model based on Mathematical Morphology (MM), which can binarize ConvNets without losing performance under certain conditions.
arXiv Detail & Related papers (2024-01-08T11:37:44Z) - A Novel Paradigm for Neural Computation: X-Net with Learnable Neurons and Adaptable Structure [29.11456970277094]
We show that X-Net can achieve comparable or even better performance than neurons on regression and classification tasks.
X-Net is shown to help scientists discover new laws of mathematics or physics.
arXiv Detail & Related papers (2024-01-03T14:52:18Z) - Going Beyond Neural Network Feature Similarity: The Network Feature
Complexity and Its Interpretation Using Category Theory [64.06519549649495]
We provide the definition of what we call functionally equivalent features.
These features produce equivalent output under certain transformations.
We propose an efficient algorithm named Iterative Feature Merging.
arXiv Detail & Related papers (2023-10-10T16:27:12Z) - An Algorithm to Train Unrestricted Sequential Discrete Morphological
Neural Networks [0.0]
We propose an algorithm to learn unrestricted sequential DMNN, whose architecture is given by the composition of general W-operators.
We illustrate the algorithm in a practical example.
arXiv Detail & Related papers (2023-10-06T20:55:05Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Smooth Mathematical Function from Compact Neural Networks [0.0]
We get NNs that generate highly accurate and highly smooth function, which only comprised of a few weight parameters.
New activation function, meta-batch method, features of numerical data, meta-augmentation with meta parameters are presented.
arXiv Detail & Related papers (2022-12-31T11:33:24Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - AI without networks [0.0]
We develop a network-free framework for AI incorporating generative modeling.
We demonstrate this framework with examples from three different disciplines - ethology, control theory, and mathematics.
We also propose an easily computed method of credit assignment based on this framework, to help address ethical-legal challenges raised by generative AI.
arXiv Detail & Related papers (2021-06-07T05:50:02Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
We present connections between three models used in different research fields: weighted finite automata(WFA) from formal languages and linguistics, recurrent neural networks used in machine learning, and tensor networks.
We introduce the first provable learning algorithm for linear 2-RNN defined over sequences of continuous vectors input.
arXiv Detail & Related papers (2020-10-19T15:28:00Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
We study how neural networks trained by gradient descent extrapolate what they learn outside the support of the training distribution.
Graph Neural Networks (GNNs) have shown some success in more complex tasks.
arXiv Detail & Related papers (2020-09-24T17:48:59Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Activation functions are not needed: the ratio net [3.9636371287541086]
This paper focus on designing a new function approximator.
Instead of designing new activation functions or kernel functions, the new proposed network uses the fractional form.
It shows that, in most cases, the ratio net converges faster and outperforms both the classification and the RBF.
arXiv Detail & Related papers (2020-05-14T01:07:56Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.