論文の概要: Registered and Segmented Deformable Object Reconstruction from a Single
View Point Cloud
- arxiv url: http://arxiv.org/abs/2311.07357v1
- Date: Mon, 13 Nov 2023 14:21:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 14:13:36.420197
- Title: Registered and Segmented Deformable Object Reconstruction from a Single
View Point Cloud
- Title(参考訳): 単一視点雲からの登録・分割変形可能な物体再構成
- Authors: Pit Henrich, Bal\'azs Gyenes, Paul Maria Scheikl, Gerhard Neumann,
Franziska Mathis-Ullrich
- Abstract要約: シミュレーションや実世界において,変形可能な物体のセグメントを頑健に見つけることを学習するシステムを提案する。
最近の方法は、変形可能なオブジェクト登録を改善するために神経占有機能を利用する。
また,より優れた学習データを生成するための簡単なサンプリングアルゴリズムも導入した。
- 参考スコア(独自算出の注目度): 14.37428912254029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In deformable object manipulation, we often want to interact with specific
segments of an object that are only defined in non-deformed models of the
object. We thus require a system that can recognize and locate these segments
in sensor data of deformed real world objects. This is normally done using
deformable object registration, which is problem specific and complex to tune.
Recent methods utilize neural occupancy functions to improve deformable object
registration by registering to an object reconstruction. Going one step
further, we propose a system that in addition to reconstruction learns
segmentation of the reconstructed object. As the resulting output already
contains the information about the segments, we can skip the registration
process. Tested on a variety of deformable objects in simulation and the real
world, we demonstrate that our method learns to robustly find these segments.
We also introduce a simple sampling algorithm to generate better training data
for occupancy learning.
- Abstract(参考訳): 変形可能なオブジェクト操作では、しばしばオブジェクトの非変形モデルでのみ定義されるオブジェクトの特定のセグメントと相互作用したいです。
したがって、変形した現実世界の物体のセンサーデータからこれらのセグメントを認識・特定できるシステムが必要である。
通常は変形可能なオブジェクト登録を使用して行われるが、これは問題特異的であり、チューニングが複雑である。
最近の手法では,オブジェクト再構成に登録することで変形可能なオブジェクト登録を改善するために,神経占有機能を利用する。
さらに一歩進めて、再構築に加えて、再構成対象のセグメンテーションを学習するシステムを提案する。
結果の出力にはセグメントに関する情報がすでに含まれているので、登録プロセスはスキップできます。
シミュレーションや実世界の様々な変形可能な物体を用いて実験を行い,本手法がこれらのセグメントを確実に見つけることを実証した。
また,より優れた学習データを生成するための簡単なサンプリングアルゴリズムも導入した。
関連論文リスト
- SINGAPO: Single Image Controlled Generation of Articulated Parts in Objects [20.978091381109294]
本稿では,単一画像から音声オブジェクトを生成する手法を提案する。
提案手法は,入力画像と視覚的に一致した音声オブジェクトを生成する。
実験の結果,本手法は音声によるオブジェクト生成における最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-10-21T20:41:32Z) - 1st Place Solution for MOSE Track in CVPR 2024 PVUW Workshop: Complex Video Object Segmentation [72.54357831350762]
本稿では,ビデオオブジェクトのセグメンテーションモデルを提案する。
我々は大規模ビデオオブジェクトセグメンテーションデータセットを用いてモデルを訓練した。
我々のモデルは、複雑なビデオオブジェクトチャレンジのテストセットで1位(textbf84.45%)を達成した。
論文 参考訳(メタデータ) (2024-06-07T03:13:46Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - ISAR: A Benchmark for Single- and Few-Shot Object Instance Segmentation
and Re-Identification [24.709695178222862]
単発および少数発のオブジェクト識別のためのベンチマークおよびベースライン手法であるISARを提案する。
地層構造意味アノテーションを用いた半合成的ビデオシーケンスデータセットを提供する。
我々のベンチマークは、マルチオブジェクト追跡、ビデオオブジェクト、再識別の新たな研究動向と一致している。
論文 参考訳(メタデータ) (2023-11-05T18:51:33Z) - Frustratingly Simple but Effective Zero-shot Detection and Segmentation:
Analysis and a Strong Baseline [45.03824571286718]
オブジェクト検出とセグメンテーションの方法は、トレーニングに豊富なインスタンスレベルのアノテーションを必要とすることが多い。
これを解決するために、ゼロショットオブジェクト検出(またはセグメンテーション)のタスクは、管理できないカテゴリのオブジェクトインスタンスを特定し、ローカライズするための効果的な方法を学ぶことを目的としている。
本研究では,これらの設計選択を幅広く研究し,単純かつ極めて効果的なゼロショット認識手法を慎重に構築する。
論文 参考訳(メタデータ) (2023-02-14T20:00:30Z) - Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape
Collections [14.899075941080541]
本研究では,部分分割型3次元形状収集における調音運動の発見のための教師なしアプローチを提案する。
私たちのアプローチは、カテゴリクロージャと呼ばれる概念に基づいています。オブジェクトの部分の有効な記述は、オブジェクトを同じ意味圏に保つべきです。
我々は、PartNet-Mobilityデータセットから部品の動きを再発見するためにこれを用いてアプローチを評価した。
論文 参考訳(メタデータ) (2022-06-17T00:50:36Z) - Discovering Objects that Can Move [55.743225595012966]
手動ラベルなしでオブジェクトを背景から分離する、オブジェクト発見の問題について検討する。
既存のアプローチでは、色、テクスチャ、位置などの外観の手がかりを使用して、ピクセルをオブジェクトのような領域に分類する。
私たちは、動的オブジェクト -- 世界で独立して動くエンティティ -- にフォーカスすることを選びます。
論文 参考訳(メタデータ) (2022-03-18T21:13:56Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - DyStaB: Unsupervised Object Segmentation via Dynamic-Static
Bootstrapping [72.84991726271024]
我々は,コヒーレントなシーン全体を移動しているように見えるシーンの画像の一部を検出し,分割するための教師なしの手法について述べる。
提案手法はまず,セグメント間の相互情報を最小化することにより,運動場を分割する。
セグメントを使用してオブジェクトモデルを学習し、静的なイメージの検出に使用することができる。
論文 参考訳(メタデータ) (2020-08-16T22:05:13Z) - Look-into-Object: Self-supervised Structure Modeling for Object
Recognition [71.68524003173219]
我々は,自己スーパービジョンを取り入れた「対象」(具体的かつ内在的に対象構造をモデル化する)を提案する。
認識バックボーンは、より堅牢な表現学習のために大幅に拡張可能であることを示す。
提案手法は汎用オブジェクト認識(ImageNet)や細粒度オブジェクト認識タスク(CUB, Cars, Aircraft)など,多数のベンチマークにおいて大きなパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-03-31T12:22:51Z) - Instance Segmentation of Visible and Occluded Regions for Finding and
Picking Target from a Pile of Objects [25.836334764387498]
本研究では,対象物体の発見・把握が可能な物体の山から対象物を選択するロボットシステムを提案する。
既存のインスタンスセグメンテーションモデルを新しいリルックアーキテクチャで拡張し、モデルがインスタンス間の関係を明示的に学習する。
また、画像合成により、人間のアノテーションを使わずに新しいオブジェクトを処理できるシステムを構築する。
論文 参考訳(メタデータ) (2020-01-21T12:28:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。