論文の概要: 1st Place Solution for MOSE Track in CVPR 2024 PVUW Workshop: Complex Video Object Segmentation
- arxiv url: http://arxiv.org/abs/2406.04600v1
- Date: Fri, 7 Jun 2024 03:13:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 15:39:08.311117
- Title: 1st Place Solution for MOSE Track in CVPR 2024 PVUW Workshop: Complex Video Object Segmentation
- Title(参考訳): 1st Place Solution for MOSE Track in CVPR 2024 PVUW Workshop: Complex Video Object Segmentation
- Authors: Deshui Miao, Xin Li, Zhenyu He, Yaowei Wang, Ming-Hsuan Yang,
- Abstract要約: 本稿では,ビデオオブジェクトのセグメンテーションモデルを提案する。
我々は大規模ビデオオブジェクトセグメンテーションデータセットを用いてモデルを訓練した。
我々のモデルは、複雑なビデオオブジェクトチャレンジのテストセットで1位(textbf84.45%)を達成した。
- 参考スコア(独自算出の注目度): 72.54357831350762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tracking and segmenting multiple objects in complex scenes has always been a challenge in the field of video object segmentation, especially in scenarios where objects are occluded and split into parts. In such cases, the definition of objects becomes very ambiguous. The motivation behind the MOSE dataset is how to clearly recognize and distinguish objects in complex scenes. In this challenge, we propose a semantic embedding video object segmentation model and use the salient features of objects as query representations. The semantic understanding helps the model to recognize parts of the objects and the salient feature captures the more discriminative features of the objects. Trained on a large-scale video object segmentation dataset, our model achieves first place (\textbf{84.45\%}) in the test set of PVUW Challenge 2024: Complex Video Object Segmentation Track.
- Abstract(参考訳): 複雑なシーンにおける複数のオブジェクトの追跡とセグメンテーションは、ビデオオブジェクトセグメンテーションの分野において、特にオブジェクトが隠され、部分に分割されるシナリオにおいて、常に課題となっている。
そのような場合、対象の定義は非常に曖昧になる。
MOSEデータセットの背後にあるモチベーションは、複雑なシーンにおけるオブジェクトを明確に認識し、区別する方法である。
本稿では,ビデオオブジェクトのセグメンテーションモデルを提案するとともに,オブジェクトの健全な特徴をクエリ表現として利用する。
セマンティック理解は、モデルがオブジェクトの一部を認識するのに役立つ。
大規模ビデオオブジェクトセグメンテーションデータセットを用いて学習し,PVUW Challenge 2024: Complex Video Object Segmentation Trackのテストセットにおいて,その1位(\textbf{84.45\%})を達成した。
関連論文リスト
- Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - MeViS: A Large-scale Benchmark for Video Segmentation with Motion
Expressions [93.35942025232943]
複雑な環境下で対象物を示すために,多数の動作表現を含む大規模データセットMeViSを提案する。
本ベンチマークの目的は,効率的な言語誘導ビデオセグメンテーションアルゴリズムの開発を可能にするプラットフォームを提供することである。
論文 参考訳(メタデータ) (2023-08-16T17:58:34Z) - MOSE: A New Dataset for Video Object Segmentation in Complex Scenes [106.64327718262764]
ビデオオブジェクトセグメンテーション(VOS)は、ビデオクリップシーケンス全体を通して特定のオブジェクトをセグメンテーションすることを目的としている。
最先端のVOSメソッドは、既存のデータセット上で優れたパフォーマンス(例えば、90%以上のJ&F)を達成した。
我々は、複雑な環境でのトラッキングとセグメンテーションを研究するために、coMplex video Object SEgmentation (MOSE)と呼ばれる新しいVOSデータセットを収集する。
論文 参考訳(メタデータ) (2023-02-03T17:20:03Z) - Image Segmentation-based Unsupervised Multiple Objects Discovery [1.7674345486888503]
教師なしオブジェクト発見は、イメージ内のオブジェクトをローカライズすることを目的としている。
我々は,複数のオブジェクトの発見に対して,完全に教師なしのボトムアップアプローチを提案する。
我々は、教師なしクラス非依存オブジェクト検出と教師なしイメージセグメンテーションの両方に対して、最先端の結果を提供する。
論文 参考訳(メタデータ) (2022-12-20T09:48:24Z) - Segmenting Moving Objects via an Object-Centric Layered Representation [100.26138772664811]
深層表現を用いたオブジェクト中心セグメンテーションモデルを提案する。
複数のオブジェクトで合成トレーニングデータを生成するスケーラブルなパイプラインを導入する。
標準的なビデオセグメンテーションベンチマークでモデルを評価する。
論文 参考訳(メタデータ) (2022-07-05T17:59:43Z) - The Second Place Solution for The 4th Large-scale Video Object
Segmentation Challenge--Track 3: Referring Video Object Segmentation [18.630453674396534]
ReferFormerは、すべてのビデオフレームで言語表現によって参照される所定のビデオでオブジェクトインスタンスをセグメントすることを目的としている。
本研究は, 循環学習率, 半教師付きアプローチ, テスト時間拡張推論など, さらなる向上策を提案する。
改良されたReferFormerはCVPR2022 Referring Youtube-VOS Challengeで2位にランクインした。
論文 参考訳(メタデータ) (2022-06-24T02:15:06Z) - SOS! Self-supervised Learning Over Sets Of Handled Objects In Egocentric
Action Recognition [35.4163266882568]
本稿では,SOS(Self-Supervised Learning Over Sets)を導入し,OIC(ジェネリック・オブジェクト・イン・コンタクト)表現モデルを事前学習する。
OICは複数の最先端ビデオ分類モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-04-10T23:27:19Z) - Discovering Objects that Can Move [55.743225595012966]
手動ラベルなしでオブジェクトを背景から分離する、オブジェクト発見の問題について検討する。
既存のアプローチでは、色、テクスチャ、位置などの外観の手がかりを使用して、ピクセルをオブジェクトのような領域に分類する。
私たちは、動的オブジェクト -- 世界で独立して動くエンティティ -- にフォーカスすることを選びます。
論文 参考訳(メタデータ) (2022-03-18T21:13:56Z) - Robust Instance Segmentation through Reasoning about Multi-Object
Occlusion [9.536947328412198]
本稿では,隠蔽に頑健な多目的インスタンスセグメンテーションのためのディープネットワークを提案する。
私たちの研究は、神経機能アクティベーションの生成モデルを学習し、オクローダの発見に役立てています。
特に、オブジェクトクラスとそのインスタンスおよびオクルーダーセグメンテーションのフィードフォワード予測を得る。
論文 参考訳(メタデータ) (2020-12-03T17:41:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。