論文の概要: Predicting Continuous Locomotion Modes via Multidimensional Feature
Learning from sEMG
- arxiv url: http://arxiv.org/abs/2311.07395v1
- Date: Mon, 13 Nov 2023 15:23:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 13:59:19.810088
- Title: Predicting Continuous Locomotion Modes via Multidimensional Feature
Learning from sEMG
- Title(参考訳): sEMGによる多次元特徴学習による連続ロコモーションモードの予測
- Authors: Peiwen Fu, Wenjuan Zhong, Yuyang Zhang, Wenxuan Xiong, Yuzhou Lin,
Yanlong Tai, Lin Meng and Mingming Zhang
- Abstract要約: 本研究では,表面筋電図(SEMG)信号から特徴抽出を統合的に行うために設計された,エンドツーエンドの深層学習モデルであるDeep-STFを提案する。
本モデルでは,9つの移動モードと15の遷移を,100msから500msの範囲で精度よく連続的に予測することができる。
- 参考スコア(独自算出の注目度): 5.9001351774968835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Walking-assistive devices require adaptive control methods to ensure smooth
transitions between various modes of locomotion. For this purpose, detecting
human locomotion modes (e.g., level walking or stair ascent) in advance is
crucial for improving the intelligence and transparency of such robotic
systems. This study proposes Deep-STF, a unified end-to-end deep learning model
designed for integrated feature extraction in spatial, temporal, and frequency
dimensions from surface electromyography (sEMG) signals. Our model enables
accurate and robust continuous prediction of nine locomotion modes and 15
transitions at varying prediction time intervals, ranging from 100 to 500 ms.
In addition, we introduced the concept of 'stable prediction time' as a
distinct metric to quantify prediction efficiency. This term refers to the
duration during which consistent and accurate predictions of mode transitions
are made, measured from the time of the fifth correct prediction to the
occurrence of the critical event leading to the task transition. This
distinction between stable prediction time and prediction time is vital as it
underscores our focus on the precision and reliability of mode transition
predictions. Experimental results showcased Deep-STP's cutting-edge prediction
performance across diverse locomotion modes and transitions, relying solely on
sEMG data. When forecasting 100 ms ahead, Deep-STF surpassed CNN and other
machine learning techniques, achieving an outstanding average prediction
accuracy of 96.48%. Even with an extended 500 ms prediction horizon, accuracy
only marginally decreased to 93.00%. The averaged stable prediction times for
detecting next upcoming transitions spanned from 28.15 to 372.21 ms across the
100-500 ms time advances.
- Abstract(参考訳): 歩行支援装置は、様々な移動モード間のスムーズな遷移を確保するために適応制御法を必要とする。
この目的のために、人間の歩行モード(例えば、レベルウォーキングや階段上昇)を事前に検出することは、そのようなロボットシステムの知性と透明性を改善するために不可欠である。
本研究では,表面筋電図(sEMG)信号から空間的・時間的・周波数的特徴抽出を統合したエンドツーエンドディープラーニングモデルであるDeep-STFを提案する。
本モデルは,100~500msの時間間隔で,9つの移動モードと15の遷移の正確な連続予測を可能にするとともに,予測効率を定量化するための「安定予測時間」の概念を導入した。
この用語は、第5の正確な予測からタスク遷移につながる臨界事象の発生までの、モード遷移の一貫性と正確な予測を行う期間を指す。
この安定予測時間と予測時間の区別は、モード遷移予測の精度と信頼性に重点を置いているため、不可欠である。
実験結果からDeep-STPの最先端予測性能は, sEMGデータにのみ依存して, 多様な移動モードおよび遷移にまたがった。
100msの予測では、Deep-STFはCNNや他の機械学習技術を上回っ、96.48%の予測精度を達成した。
500msの予測水平線が延長されても、精度は93.00%に低下した。
次回の遷移を検出するための平均的な安定な予測時間は、100-500msの速度で28.15msから372.21msの範囲に及んだ。
関連論文リスト
- Fusion of Movement and Naive Predictions for Point Forecasting in Univariate Random Walks [6.935130578959931]
方法はランダムウォークの変種定義から導かれ、将来の値に対するランダムなエラー項は、方向記号で乗算された正のランダムなエラーとして表現される。
0.55のような中程度の運動予測精度で、ナイーブ予測を確実に上回る。
正確な点予測が難しいが、正確な運動予測が可能である場合、特に有利である。
論文 参考訳(メタデータ) (2024-06-20T16:32:18Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
本稿では,GPT方式の次のトークン動作予測を動作予測に導入する。
同種単位-ワードからなる言語データとは異なり、運転シーンの要素は複雑な空間的・時間的・意味的な関係を持つ可能性がある。
そこで本稿では,情報集約と位置符号化スタイルの異なる3つの因子化アテンションモジュールを用いて,それらの関係を捉えることを提案する。
論文 参考訳(メタデータ) (2024-03-20T06:22:37Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
SMURF-THPは,変圧器ホークス過程を学習し,予測の不確かさを定量化するスコアベース手法である。
具体的には、SMURF-THPは、スコアマッチング目標に基づいて、イベントの到着時刻のスコア関数を学習する。
我々は,イベントタイプ予測と到着時刻の不確実性定量化の両方において,広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-25T03:33:45Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
人工知能(AI)に基づく高度データ駆動型中距離気象予報システムFengWuについて紹介する。
FengWuは大気力学を正確に再現し、0.25度緯度で37の垂直レベルで将来の陸と大気の状態を予測することができる。
その結果、FengWuは予測能力を大幅に向上させ、熟練した中距離気象予報を10.75日間のリードまで拡張できることがわかった。
論文 参考訳(メタデータ) (2023-04-06T09:16:39Z) - Sinkhorn-Flow: Predicting Probability Mass Flow in Dynamical Systems
Using Optimal Transport [89.61692654941106]
そこで本稿では, 最適な輸送手段を用いて, 時間とともにそのような物質流を予測する新しい手法を提案する。
我々は、ソーシャルネットワークの設定において、コミュニティがどのように進化していくかを予測するタスクに、我々のアプローチを適用した。
論文 参考訳(メタデータ) (2023-03-14T07:25:44Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - Probabilistic prediction of the heave motions of a semi-submersible by a
deep learning problem model [4.903969235471705]
深層学習(DL)モデルを拡張し,20~50秒前に浮遊半潜水艇のヒーブ・サージ動作を精度良く予測する。
本研究では,オフショアプラットフォームの波動励起運動を予測するために,DLモデルの理解を深める。
論文 参考訳(メタデータ) (2021-10-09T06:26:42Z) - Motion Prediction Using Temporal Inception Module [96.76721173517895]
人間の動作を符号化するTIM(Temporal Inception Module)を提案する。
本フレームワークは,異なる入力長に対して異なるカーネルサイズを用いて,畳み込み層を用いて入力埋め込みを生成する。
標準的な動き予測ベンチマークデータセットであるHuman3.6MとCMUのモーションキャプチャデータセットの実験結果から,我々の手法は一貫して技術手法の状態を上回ります。
論文 参考訳(メタデータ) (2020-10-06T20:26:01Z) - Long-Term Prediction of Lane Change Maneuver Through a Multilayer
Perceptron [5.267336573374459]
横方向情報や角度情報のない長期(510秒)レーン変更予測モデルを提案する。
ロジスティック回帰モデル、多層パーセプトロン(MLP)モデル、リカレントニューラルネットワーク(RNN)モデルを含む3つの予測モデルが導入されている。
評価結果から, 開発した予測モデルでは, 実車線変更操作の75%を平均8.05秒で捉えることができることがわかった。
論文 参考訳(メタデータ) (2020-06-23T05:32:40Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
本稿では,テンソルに基づく予測に焦点をあて,予測を改善するためのいくつかの実践的手法を提案する。
具体的には、長期予測のために「テンソル分解+2次元自己回帰移動平均(2D-ARMA)」モデルを提案する。
短期予測のために,テンソルクラスタリングに基づくテンソル補完を行い,過度に単純化され精度が保証されるのを避けることを提案する。
論文 参考訳(メタデータ) (2020-04-23T08:30:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。