論文の概要: Explainable Boosting Machines with Sparsity -- Maintaining
Explainability in High-Dimensional Settings
- arxiv url: http://arxiv.org/abs/2311.07452v1
- Date: Mon, 13 Nov 2023 16:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 13:32:47.115389
- Title: Explainable Boosting Machines with Sparsity -- Maintaining
Explainability in High-Dimensional Settings
- Title(参考訳): 空間を有する説明可能なブースティングマシン -高次元設定における説明可能性の維持
- Authors: Brandon M. Greenwell and Annika Dahlmann and Saurabh Dhoble
- Abstract要約: 最小絶対収縮・選択演算子(LASSO)に基づく簡単な解を提案する。
LASSOは、個々のモデル用語を再重み付けし、重要でない用語を削除することで、疎結合を導入するのに役立つ。
コードを使った実世界の2つの例を使って、基本的なアイデアを説明します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compared to "black-box" models, like random forests and deep neural networks,
explainable boosting machines (EBMs) are considered "glass-box" models that can
be competitively accurate while also maintaining a higher degree of
transparency and explainability. However, EBMs become readily less transparent
and harder to interpret in high-dimensional settings with many predictor
variables; they also become more difficult to use in production due to
increases in scoring time. We propose a simple solution based on the least
absolute shrinkage and selection operator (LASSO) that can help introduce
sparsity by reweighting the individual model terms and removing the less
relevant ones, thereby allowing these models to maintain their transparency and
relatively fast scoring times in higher-dimensional settings. In short,
post-processing a fitted EBM with many (i.e., possibly hundreds or thousands)
of terms using the LASSO can help reduce the model's complexity and drastically
improve scoring time. We illustrate the basic idea using two real-world
examples with code.
- Abstract(参考訳): ランダムフォレストやディープニューラルネットワークのような"ブラックボックス"モデルと比較して、説明可能なブースティングマシン(EBM)は、高い透明性と説明可能性を維持しながら競争的に正確である"グラスボックス"モデルである。
しかし、ESMは容易に透明性が低くなり、多くの予測変数を持つ高次元設定で解釈しにくくなり、またスコアリング時間の増加によりプロダクションでの使用も困難になる。
我々は,個々のモデル用語を重み付けし,関係の少ないものを取り除き,高次元環境での透明性を維持し,比較的高速なスコアリング時間を実現するための,最小絶対収縮選択演算子(lasso)に基づく簡易解を提案する。
つまり、LASSOを使用する多くの用語(つまり数百から数千)で組み込まれたEMMを後処理することは、モデルの複雑さを減らし、スコアリング時間を大幅に改善する。
コードを使った実世界の例を2つ紹介する。
関連論文リスト
- Gnothi Seauton: Empowering Faithful Self-Interpretability in Black-Box Models [21.698201509643624]
概念に基づくネットワークのような自己解釈型モデルは、決定を人間の理解可能な概念に結びつけることによって洞察を与える。
シャプリー値のようなポストホック法は理論的には堅牢であるが、計算コストが高く、資源集約的である。
ブラックボックスモデルに対する理論的に保証された自己解釈性を提供する。
論文 参考訳(メタデータ) (2024-10-29T07:35:33Z) - Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
本稿では、より説明可能なアクティベーションヒートマップを取得し、同時にモデル性能を向上させるフレームワークを提案する。
具体的には、モデル学習において、トレーニングサンプルを適応的に重み付けするために、新しいメトリクス、すなわち説明整合性を導入する。
そこで,本フレームワークは,これらのトレーニングサンプルに深い注意を払ってモデル学習を促進する。
論文 参考訳(メタデータ) (2024-08-08T17:20:08Z) - Black-Box Tuning of Vision-Language Models with Effective Gradient
Approximation [71.21346469382821]
ブラックボックスモデルに対するテキストプロンプト最適化と出力特徴適応のための協調ブラックボックスチューニング(CBBT)を導入する。
CBBTは11のダウンストリームベンチマークで広範囲に評価され、既存のブラックボックスVL適応法と比較して顕著に改善されている。
論文 参考訳(メタデータ) (2023-12-26T06:31:28Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
コンセプト・ボトルネック・モデル (Concept Bottleneck Models, CBM) は導入以来人気を集めている。
CBMは基本的に、モデルの潜在空間を人間に理解可能な高レベルな概念に制限する。
本稿では,協調型コンセプション・ボトルネックモデル(coop-CBM)を提案し,性能トレードオフを克服する。
論文 参考訳(メタデータ) (2023-11-18T15:50:07Z) - ECoFLaP: Efficient Coarse-to-Fine Layer-Wise Pruning for Vision-Language
Models [70.45441031021291]
LVLM(Large Vision-Language Models)は、様々なモダリティから豊富な情報を統合することで、世界を包括的に理解することができる。
LVLMは計算/エネルギーの膨大なコストと炭素消費のためにしばしば問題となる。
本稿では,LVLMの2段間粗大な重み付け法であるECoFLaP(Efficient Coarse-to-Fine LayerWise Pruning)を提案する。
論文 参考訳(メタデータ) (2023-10-04T17:34:00Z) - Can SAM Boost Video Super-Resolution? [78.29033914169025]
単純な有効モジュールであるSAM-guidEd refinEment Module (SEEM)を提案する。
この軽量プラグインモジュールは、セマンティック・アウェア機能の生成にアテンションメカニズムを活用するように設計されている。
我々はSEEMをEDVRとBasicVSRの2つの代表的手法に適用し、最小限の実装労力で継続的に性能を向上する。
論文 参考訳(メタデータ) (2023-05-11T02:02:53Z) - Shapelet-Based Counterfactual Explanations for Multivariate Time Series [0.9990687944474738]
我々は,モデル非依存多変量時系列(MTS)の対実的説明アルゴリズムを開発した。
我々は、実生活の太陽フレア予測データセット上で、我々のアプローチを検証し、我々のアプローチが高品質な反事実を生み出すことを証明した。
視覚的に解釈可能であることに加えて、我々の説明は近接性、疎性、そして妥当性の点で優れている。
論文 参考訳(メタデータ) (2022-08-22T17:33:31Z) - Interpretable pipelines with evolutionarily optimized modules for RL
tasks with visual inputs [5.254093731341154]
進化的アルゴリズムを用いて協調最適化された複数の解釈可能なモデルからなるエンドツーエンドパイプラインを提案する。
Atariベンチマークの強化学習環境において,本手法を検証した。
論文 参考訳(メタデータ) (2022-02-10T10:33:44Z) - When in Doubt, Summon the Titans: Efficient Inference with Large Models [80.2673230098021]
本稿では,大規模モデルのモデル化の利点を実現する蒸留に基づく2段階の枠組みを提案する。
簡単な"例のサブセットでのみ正確な予測を行うために、私たちは、大きな教師モデルを使用して、軽量な学生モデルをガイドします。
提案した蒸留法は, 簡単な事例のみを扱うため, 学生規模でより積極的なトレードオフが可能であり, 推論の償却コストを低減できる。
論文 参考訳(メタデータ) (2021-10-19T22:56:49Z) - Self-Damaging Contrastive Learning [92.34124578823977]
ラベルのないデータは一般に不均衡であり、長い尾の分布を示す。
本稿では,クラスを知らずに表現学習を自動的にバランスをとるための,自己学習コントラスト学習という原則的枠組みを提案する。
実験の結果,SDCLRは全体としての精度だけでなく,バランス性も著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-06-06T00:04:49Z) - Lifting Interpretability-Performance Trade-off via Automated Feature
Engineering [5.802346990263708]
複雑なブラックボックス予測モデルは高い性能を持つが、解釈可能性の欠如は問題を引き起こす。
本稿では, 弾性ブラックボックスを代理モデルとして用いて, よりシンプルで不透明で, 正確かつ解釈可能なガラスボックスモデルを作成する方法を提案する。
論文 参考訳(メタデータ) (2020-02-11T09:16:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。