論文の概要: Fully Explainable Classification Models Using Hyperblocks
- arxiv url: http://arxiv.org/abs/2506.06986v1
- Date: Sun, 08 Jun 2025 04:00:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.601171
- Title: Fully Explainable Classification Models Using Hyperblocks
- Title(参考訳): ハイパーブロックを用いた完全説明可能な分類モデル
- Authors: Austin Snyder, Ryan Gallagher, Boris Kovalerchuk,
- Abstract要約: Hyperblocksを使った既存の作業に基づいて、解釈可能性の向上、トレーニング時間の短縮、モデルの複雑さの軽減に重点を置いています。
このシステムでは、広範囲な機械学習の専門知識を必要とせずに、対象物の専門家(SME)がモデルの決定ロジックを直接検査し、理解することができる。
- 参考スコア(独自算出の注目度): 2.6217304977339464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building on existing work with Hyperblocks, which classify data using minimum and maximum bounds for each attribute, we focus on enhancing interpretability, decreasing training time, and reducing model complexity without sacrificing accuracy. This system allows subject matter experts (SMEs) to directly inspect and understand the model's decision logic without requiring extensive machine learning expertise. To reduce Hyperblock complexity while retaining performance, we introduce a suite of algorithms for Hyperblock simplification. These include removing redundant attributes, removing redundant blocks through overlap analysis, and creating disjunctive units. These methods eliminate unnecessary parameters, dramatically reducing model size without harming classification power. We increase robustness by introducing an interpretable fallback mechanism using k-Nearest Neighbor (k-NN) classifiers for points not covered by any block, ensuring complete data coverage while preserving model transparency. Our results demonstrate that interpretable models can scale to high-dimensional, large-volume datasets while maintaining competitive accuracy. On benchmark datasets such as WBC (9-D), we achieve strong predictive performance with significantly reduced complexity. On MNIST (784-D), our method continues to improve through tuning and simplification, showing promise as a transparent alternative to black-box models in domains where trust, clarity, and control are crucial.
- Abstract(参考訳): 属性毎に最小限と最大限のバウンダリを使ってデータを分類するHyperblocksを使った既存の作業に基づいて、解釈可能性の向上、トレーニング時間の短縮、精度を犠牲にすることなくモデルの複雑さの軽減に重点を置いています。
このシステムでは、広範囲な機械学習の専門知識を必要とせずに、対象物の専門家(SME)がモデルの決定ロジックを直接検査し、理解することができる。
性能を維持しながらハイパーブロックの複雑性を低減するため,ハイパーブロックの単純化のためのアルゴリズム一式を導入する。
これには、冗長な属性の削除、重複解析による冗長なブロックの削除、解離ユニットの作成が含まれる。
これらの手法は不要なパラメータを排除し、分類力を損なうことなくモデルサイズを劇的に削減する。
我々は,k-Nearest Neighbor (k-NN)分類器を用いて,任意のブロックでカバーされていない点に対して解釈可能なフォールバック機構を導入し,モデルの透明性を維持しながら完全なデータカバレッジを確保することにより,ロバスト性を向上させる。
この結果から,解釈可能なモデルは高次元大容量データセットにスケールでき,競争精度は維持できることがわかった。
WBC (9-D) などのベンチマークデータセットでは,複雑性を著しく低減した強い予測性能が得られる。
MNIST (784-D) では, 信頼性, 明瞭度, 制御が重要となる領域において, ブラックボックスモデルに代わる透過的な代替手段として, チューニングと単純化により改善が続けられている。
関連論文リスト
- Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
拡散モデルはマルチラウンド・デノナイジングの時間ステップに依存している。
3つの戦略を含む新しい量子化フレームワークを導入する。
このフレームワークは時間情報のほとんどを保存し、高品質なエンドツーエンド生成を保証する。
論文 参考訳(メタデータ) (2024-07-28T17:46:15Z) - DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers [34.282971510732736]
我々は、セレクタ分類器アーキテクチャを備えた新しいDNNトレーニングおよび推論フレームワークであるDiTMoSを紹介する。
弱いモデルの合成は高い多様性を示すことができ、それらの結合は精度の上限を大幅に高めることができる。
我々は,Nucleo STM32F767ZIボード上にDiTMoSをデプロイし,人間の活動認識,キーワードスポッティング,感情認識のための時系列データセットに基づいて評価する。
論文 参考訳(メタデータ) (2024-03-14T02:11:38Z) - Balancing Act: Constraining Disparate Impact in Sparse Models [20.058720715290434]
本研究では,プルーニングの異なる影響に直接対処する制約付き最適化手法を提案する。
我々の定式化は、各部分群に対する密度モデルとスパースモデルの間の精度変化を束縛する。
実験により,本手法は大規模モデルや数百の保護されたサブグループに関わる問題に対して確実にスケール可能であることが示された。
論文 参考訳(メタデータ) (2023-10-31T17:37:35Z) - Flag Aggregator: Scalable Distributed Training under Failures and
Augmented Losses using Convex Optimization [14.732408788010313]
MLアプリケーションはますます、複雑なディープラーニングモデルと大規模なデータセットに依存している。
計算とデータをスケールするために、これらのモデルはノードのクラスタ内で分散的にトレーニングされ、それらの更新はモデルに適用される前に集約される。
これらの設定にデータ拡張を加えることで、堅牢で効率的なアグリゲーションシステムが必要である。
この手法は,最先端のビザンツ系レジリエントアグリゲータのロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-02-12T06:38:30Z) - SlimSeg: Slimmable Semantic Segmentation with Boundary Supervision [54.16430358203348]
本稿では,単純なスリム化可能なセマンティックセマンティックセマンティクス(SlimSeg)法を提案する。
提案するSlimSegは,様々な主流ネットワークを用いて,計算コストの動的調整と性能向上を実現するフレキシブルなモデルを生成することができることを示す。
論文 参考訳(メタデータ) (2022-07-13T14:41:05Z) - Few-Shot Non-Parametric Learning with Deep Latent Variable Model [50.746273235463754]
遅延変数を用いた圧縮による非パラメトリック学習(NPC-LV)を提案する。
NPC-LVは、ラベルなしデータが多いがラベル付きデータはほとんどないデータセットの学習フレームワークである。
我々は,NPC-LVが低データ構造における画像分類における3つのデータセットの教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-23T09:35:03Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
この研究は、大規模構造化モデルの計算とメモリの複雑さを低減するための単純なアプローチを示す。
言語モデリング,ポリフォニック・ミュージック・モデリング,教師なし文法帰納法,ビデオ・モデリングのためのニューラルパラメータ構造モデルを用いた実験により,我々の手法は大規模状態空間における標準モデルの精度と一致することを示した。
論文 参考訳(メタデータ) (2022-01-08T00:47:50Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。