Uncertainty estimation of machine learning spatial precipitation predictions from satellite data
- URL: http://arxiv.org/abs/2311.07511v3
- Date: Wed, 21 Aug 2024 18:49:46 GMT
- Title: Uncertainty estimation of machine learning spatial precipitation predictions from satellite data
- Authors: Georgia Papacharalampous, Hristos Tyralis, Nikolaos Doulamis, Anastasios Doulamis,
- Abstract summary: Merging satellite and gauge data with machine learning produces high-resolution precipitation datasets.
We address the gap of how to optimally provide such estimates by benchmarking six algorithms.
We propose a suite of machine learning algorithms for estimating uncertainty in spatial data prediction.
- Score: 3.8623569699070353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Merging satellite and gauge data with machine learning produces high-resolution precipitation datasets, but uncertainty estimates are often missing. We addressed the gap of how to optimally provide such estimates by benchmarking six algorithms, mostly novel even for the more general task of quantifying predictive uncertainty in spatial prediction settings. On 15 years of monthly data from over the contiguous United States (CONUS), we compared quantile regression (QR), quantile regression forests (QRF), generalized random forests (GRF), gradient boosting machines (GBM), light gradient boosting machine (LightGBM), and quantile regression neural networks (QRNN). Their ability to issue predictive precipitation quantiles at nine quantile levels (0.025, 0.050, 0.100, 0.250, 0.500, 0.750, 0.900, 0.950, 0.975), approximating the full probability distribution, was evaluated using quantile scoring functions and the quantile scoring rule. Predictors at a site were nearby values from two satellite precipitation retrievals, namely PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and IMERG (Integrated Multi-satellitE Retrievals), and the site's elevation. The dependent variable was the monthly mean gauge precipitation. With respect to QR, LightGBM showed improved performance in terms of the quantile scoring rule by 11.10%, also surpassing QRF (7.96%), GRF (7.44%), GBM (4.64%) and QRNN (1.73%). Notably, LightGBM outperformed all random forest variants, the current standard in spatial prediction with machine learning. To conclude, we propose a suite of machine learning algorithms for estimating uncertainty in spatial data prediction, supported with a formal evaluation framework based on scoring functions and scoring rules.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Uncertainty estimation in satellite precipitation spatial prediction by combining distributional regression algorithms [3.8623569699070353]
We introduce the concept of distributional regression for the engineering task of creating precipitation datasets through data merging.
We propose new ensemble learning methods that can be valuable not only for spatial prediction but also for prediction problems in general.
arXiv Detail & Related papers (2024-06-29T05:58:00Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Uncertainty estimation in spatial interpolation of satellite precipitation with ensemble learning [3.8623569699070353]
We introduce nine quantile-based ensemble learners and apply them to large precipitation datasets.
Our ensemble learners include six stacking and three simple methods (mean, median, best combiner)
Stacking with QR and QRNN yielded the best results across quantile levels of interest.
arXiv Detail & Related papers (2024-03-14T17:45:56Z) - Regression Trees for Fast and Adaptive Prediction Intervals [2.6763498831034043]
We present a family of methods to calibrate prediction intervals for regression problems with local coverage guarantees.
We create a partition by training regression trees and Random Forests on conformity scores.
Our proposal is versatile, as it applies to various conformity scores and prediction settings.
arXiv Detail & Related papers (2024-02-12T01:17:09Z) - Merging satellite and gauge-measured precipitation using LightGBM with
an emphasis on extreme quantiles [7.434517639563671]
Knowing actual precipitation in space and time is critical in hydrological modelling applications.
Gridded satellite precipitation datasets offer an alternative option for estimating the actual precipitation.
To improve precipitation estimates, machine learning is applied to merge rain gauge-based measurements and gridded satellite precipitation products.
arXiv Detail & Related papers (2023-02-02T20:03:21Z) - Comparison of machine learning algorithms for merging gridded satellite
and earth-observed precipitation data [7.434517639563671]
We use monthly earth-observed precipitation data from the Global Historical Climatology Network monthly database, version 2.
Results suggest that extreme gradient boosting and random forests are the most accurate in terms of the squared error scoring function.
arXiv Detail & Related papers (2022-12-17T09:39:39Z) - Understanding the Under-Coverage Bias in Uncertainty Estimation [58.03725169462616]
quantile regression tends to emphunder-cover than the desired coverage level in reality.
We prove that quantile regression suffers from an inherent under-coverage bias.
Our theory reveals that this under-coverage bias stems from a certain high-dimensional parameter estimation error.
arXiv Detail & Related papers (2021-06-10T06:11:55Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions.
We investigate methods for aggregating any number of conditional quantile models.
All of the models we consider in this paper can be fit using modern deep learning toolkits.
arXiv Detail & Related papers (2021-02-26T23:21:16Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
We present APQ for efficient deep learning inference on resource-constrained hardware.
Unlike previous methods that separately search the neural architecture, pruning policy, and quantization policy, we optimize them in a joint manner.
With the same accuracy, APQ reduces the latency/energy by 2x/1.3x over MobileNetV2+HAQ.
arXiv Detail & Related papers (2020-06-15T16:09:17Z) - Censored Quantile Regression Forest [81.9098291337097]
We develop a new estimating equation that adapts to censoring and leads to quantile score whenever the data do not exhibit censoring.
The proposed procedure named it censored quantile regression forest, allows us to estimate quantiles of time-to-event without any parametric modeling assumption.
arXiv Detail & Related papers (2020-01-08T23:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.