論文の概要: Estimating optical vegetation indices and biophysical variables for temperate forests with Sentinel-1 SAR data using machine learning techniques: A case study for Czechia
- arxiv url: http://arxiv.org/abs/2311.07537v2
- Date: Tue, 27 Aug 2024 14:34:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 20:08:36.302630
- Title: Estimating optical vegetation indices and biophysical variables for temperate forests with Sentinel-1 SAR data using machine learning techniques: A case study for Czechia
- Title(参考訳): 機械学習技術を用いたセンチネル-1 SARデータを用いた温帯森林の光学的植生指標と生物物理変数の推定:チェコを事例として
- Authors: Daniel Paluba, Bertrand Le Saux, Přemysl Stych,
- Abstract要約: 森林生態系をモニタリングするための現在の光学的植生指標(VIs)は,様々な用途でよく確立され,広く利用されている。
対照的に、合成開口レーダ(SAR)のデータは、雲や昼夜の画像取得による信号の侵入により、完全な時系列(TS)を備えた洞察に富んだ、体系的な森林モニタリングを提供することができる。
本研究では、SARデータを用いて、機械学習(ML)による森林の光VIs推定の代替として光学衛星データの限界に対処することを目的とする。
一般に、SARベースのVIを高精度に推定し、年間240回測定し、空間分解能を20mまで向上することができる。
- 参考スコア(独自算出の注目度): 32.19783248549554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current optical vegetation indices (VIs) for monitoring forest ecosystems are well established and widely used in various applications, but can be limited by atmospheric effects such as clouds. In contrast, synthetic aperture radar (SAR) data can offer insightful and systematic forest monitoring with complete time series (TS) due to signal penetration through clouds and day and night image acquisitions. This study aims to address the limitations of optical satellite data by using SAR data as an alternative for estimating optical VIs for forests through machine learning (ML). While this approach is less direct and likely only feasible through the power of ML, it raises the scientific question of whether enough relevant information is contained in the SAR signal to accurately estimate VIs. This work covers the estimation of TS of four VIs (LAI, FAPAR, EVI and NDVI) using multitemporal Sentinel-1 SAR and ancillary data. The study focused on both healthy and disturbed temperate forest areas in Czechia for the year 2021, while ground truth labels generated from Sentinel-2 multispectral data. This was enabled by creating a paired multi-modal TS dataset in Google Earth Engine (GEE), including temporally and spatially aligned Sentinel-1, Sentinel-2, DEM, weather and land cover datasets. The inclusion of DEM-derived auxiliary features and additional meteorological information, further improved the results. In the comparison of ML models, the traditional ML algorithms, RFR and XGBoost slightly outperformed the AutoML approach, auto-sklearn, for all VIs, achieving high accuracies ($R^2$ between 70-86%) and low errors (0.055-0.29 of MAE). In general, up to 240 measurements per year and a spatial resolution of 20 m can be achieved using estimated SAR-based VIs with high accuracy. A great advantage of the SAR-based VI is the ability to detect abrupt forest changes with sub-weekly temporal accuracy.
- Abstract(参考訳): 森林生態系をモニタリングするための現在の光学的植生指標(VIs)は、様々な用途でよく確立され広く利用されているが、雲のような大気の影響によって制限される可能性がある。
対照的に、合成開口レーダ(SAR)のデータは、雲や昼夜の画像取得による信号の侵入により、完全な時系列(TS)を備えた洞察に富んだ、体系的な森林モニタリングを提供することができる。
本研究の目的は、機械学習(ML)による森林の光VIs推定の代替手段として、SARデータを用いて光学衛星データの限界に対処することである。
このアプローチは直接的ではなく、MLの力によってのみ実現可能であるが、VIを正確に推定するために十分な関連情報がSAR信号に含まれるかどうかという科学的疑問を提起する。
本研究は,マルチテンポラルセンチネル-1 SARとアシラリーデータを用いて,4つのVI(LAI, FAPAR, EVI, NDVI)のTSを推定する。
この研究は、2021年のチェコの健康と乱れた温帯の森林地域の両方に焦点をあて、Sentinel-2マルチスペクトルデータから地中真理ラベルを作成した。
これは、Google Earth Engine(GEE)にペア化されたマルチモーダルTSデータセットを作成することで実現された。
DEM由来の補助的特徴と追加の気象情報を含めることで、さらなる結果が得られた。
MLモデルの比較において、従来のMLアルゴリズムであるRFRとXGBoostは、すべてのVIに対してAutoMLアプローチであるAuto-sklearnをわずかに上回り、高い精度(R^2$から70-86%)と低いエラー(MAEの0.055-0.29)を達成した。
一般に、SARベースのVIを高精度に推定し、年間240回測定し、空間分解能を20mまで向上することができる。
SARベースのVIの大きな利点は、急激な森林変動を週単位の時間的精度で検出できることである。
関連論文リスト
- Comparing remote sensing-based forest biomass mapping approaches using new forest inventory plots in contrasting forests in northeastern and southwestern China [6.90293949599626]
大規模高空間分解能地上バイオマス(AGB)マップは、森林炭素ストックの決定と変化の過程において重要な役割を担っている。
GEDIは、散布された足跡を収集するサンプリング装置であり、そのデータは他の連続カバー衛星のデータと組み合わせて高解像度の地図を作成する必要がある。
GEDI L2Aデータから森林AGBを推定するローカルモデルを開発した。
論文 参考訳(メタデータ) (2024-05-24T11:10:58Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
我々は,大規模SARオブジェクト検出のための新しいベンチマークデータセットとオープンソース手法を構築した。
私たちのデータセットであるSARDet-100Kは、10の既存のSAR検出データセットの厳格な調査、収集、標準化の結果です。
私たちの知る限りでは、SARDet-100KはCOCOレベルの大規模マルチクラスSARオブジェクト検出データセットとしては初めてのものです。
論文 参考訳(メタデータ) (2024-03-11T09:20:40Z) - Creating and Leveraging a Synthetic Dataset of Cloud Optical Thickness Measures for Cloud Detection in MSI [3.4764766275808583]
雲の形成は、しばしば地球の地表を観測する光学衛星による不明瞭な観測である。
雲の光学的厚さ推定のための新しい合成データセットを提案する。
信頼性と汎用性を備えたクラウドマスクを実データで取得するために活用する。
論文 参考訳(メタデータ) (2023-11-23T14:28:28Z) - Combining multitemporal optical and SAR data for LAI imputation with
BiLSTM network [0.0]
葉面積指数(LAI)は冬のコムギ収量の予測に不可欠である。センチネル-2リモートセンシング画像による収穫条件の取得は、持続的な雲によって妨げられ、収量予測に影響を及ぼす。
本研究では,LAI計算における時系列Sentinel-1 VH/VVの有用性について検討し,空間時間密度の向上を目的とした。
我々は、双方向LSTM(BiLSTM)ネットワークを用いて時系列LAIをインプットし、損失関数として各ステップの半平均2乗誤差を使用する。
論文 参考訳(メタデータ) (2023-07-14T15:59:19Z) - Imbalanced Aircraft Data Anomaly Detection [103.01418862972564]
航空シナリオ下でのセンサーからの時間データの異常検出は実用的だが難しい課題である。
本稿では,グラフィカル・テンポラル・データ分析フレームワークを提案する。
シリーズ・トゥ・イメージ (S2I) と呼ばれる3つのモジュール、ユークリッド距離 (CRD) を用いたクラスタ・ベース・リサンプリング・アプローチ、変数・ベース・ロス (VBL) から構成される。
論文 参考訳(メタデータ) (2023-05-17T09:37:07Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Fusing Optical and SAR time series for LAI gap filling with multioutput
Gaussian processes [6.0122901245834015]
農地上の永久雲は、作物の生育の重要な段階を隠蔽し、信頼できない収量予測をもたらす。
SAR(Synthetic Aperture Radar)は、この制限を克服できるオールウェザー画像を提供する。
本稿では,マルチセンサ時系列間の統計的関係を自動的に学習する機械学習手法であるMOGP回帰(Multi-Output Gaussian Process)を提案する。
論文 参考訳(メタデータ) (2020-12-05T10:36:45Z) - SpaceNet 6: Multi-Sensor All Weather Mapping Dataset [13.715388432549373]
オープンなMulti-Sensor All Weather Mapping (MSAW)データセットと課題について述べる。
MSAWは複数の重なり合う集合体を120 km2で覆っており、48,000以上のユニークな建物フットプリントラベルがアノテートされている。
我々は,SARデータを用いた足跡抽出のためのベースラインとベンチマークを提案し,光学データに基づいて事前訓練された最先端セグメンテーションモデルを発見し,SARで訓練した。
論文 参考訳(メタデータ) (2020-04-14T13:43:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。