論文の概要: Comparing remote sensing-based forest biomass mapping approaches using new forest inventory plots in contrasting forests in northeastern and southwestern China
- arxiv url: http://arxiv.org/abs/2405.15438v1
- Date: Fri, 24 May 2024 11:10:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 14:52:03.824503
- Title: Comparing remote sensing-based forest biomass mapping approaches using new forest inventory plots in contrasting forests in northeastern and southwestern China
- Title(参考訳): 中国北東部と南西部の森林と対照的な森林における新たな森林在庫計画を用いたリモートセンシングに基づく森林バイオマスマッピング手法の比較
- Authors: Wenquan Dong, Edward T. A. Mitchard, Yuwei Chen, Man Chen, Congfeng Cao, Peilun Hu, Cong Xu, Steven Hancock,
- Abstract要約: 大規模高空間分解能地上バイオマス(AGB)マップは、森林炭素ストックの決定と変化の過程において重要な役割を担っている。
GEDIは、散布された足跡を収集するサンプリング装置であり、そのデータは他の連続カバー衛星のデータと組み合わせて高解像度の地図を作成する必要がある。
GEDI L2Aデータから森林AGBを推定するローカルモデルを開発した。
- 参考スコア(独自算出の注目度): 6.90293949599626
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large-scale high spatial resolution aboveground biomass (AGB) maps play a crucial role in determining forest carbon stocks and how they are changing, which is instrumental in understanding the global carbon cycle, and implementing policy to mitigate climate change. The advent of the new space-borne LiDAR sensor, NASA's GEDI instrument, provides unparalleled possibilities for the accurate and unbiased estimation of forest AGB at high resolution, particularly in dense and tall forests, where Synthetic Aperture Radar (SAR) and passive optical data exhibit saturation. However, GEDI is a sampling instrument, collecting dispersed footprints, and its data must be combined with that from other continuous cover satellites to create high-resolution maps, using local machine learning methods. In this study, we developed local models to estimate forest AGB from GEDI L2A data, as the models used to create GEDI L4 AGB data incorporated minimal field data from China. We then applied LightGBM and random forest regression to generate wall-to-wall AGB maps at 25 m resolution, using extensive GEDI footprints as well as Sentinel-1 data, ALOS-2 PALSAR-2 and Sentinel-2 optical data. Through a 5-fold cross-validation, LightGBM demonstrated a slightly better performance than Random Forest across two contrasting regions. However, in both regions, the computation speed of LightGBM is substantially faster than that of the random forest model, requiring roughly one-third of the time to compute on the same hardware. Through the validation against field data, the 25 m resolution AGB maps generated using the local models developed in this study exhibited higher accuracy compared to the GEDI L4B AGB data. We found in both regions an increase in error as slope increased. The trained models were tested on nearby but different regions and exhibited good performance.
- Abstract(参考訳): 大規模高空間分解能地上バイオマス(AGB)マップは、森林炭素資源の決定と変化の仕方において重要な役割を担っており、これは地球規模の炭素循環を理解し、気候変動を緩和するための政策を実行するのに役立っている。
NASAの新しい宇宙搭載LiDARセンサーであるGEDIは、特にSAR(Synthetic Aperture Radar)と受動光学データによる飽和度を示す高密度・高密度の森林において、高解像度で森林AGBの正確で偏りのない推定を可能にする。
しかし、GEDIはサンプリング装置であり、分散されたフットプリントを収集し、そのデータを他の連続カバー衛星のデータと組み合わせて、局所的な機械学習手法を用いて高解像度の地図を作成する必要がある。
本研究では,中国からの最小フィールドデータを組み込んだGEDI L4 AGBデータ作成モデルとして,GEDI L2Aデータから森林AGBを推定するローカルモデルを開発した。
次に,25mの壁面AGBマップの生成にLightGBMとランダム森林回帰を適用し,GEDIフットプリントとSentinel-1データ,ALOS-2 PALSAR-2およびSentinel-2光データを用いた。
5倍のクロスバリデーションにより、LightGBMは2つの対照的な領域にわたるランダムフォレストよりも若干優れたパフォーマンスを示した。
しかし、両領域とも、LightGBMの計算速度はランダムフォレストモデルよりもかなり高速であり、同じハードウェア上で計算するのに約3分の1の時間を要する。
フィールドデータに対する検証により, GEDI L4B AGBデータと比較して, 局所モデルを用いて生成した25m解像度のAGBマップの精度が高かった。
両地域では斜面の上昇に伴い誤差が増加した。
訓練されたモデルは近くの異なる地域で試験され、優れた性能を示した。
関連論文リスト
- Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
主要な知見は,提案モデルが画像分類の精度を維持するだけでなく,EOのユースケースの約5%の精度向上を図っていることを示唆している。
論文 参考訳(メタデータ) (2024-07-24T09:11:34Z) - AGBD: A Global-scale Biomass Dataset [18.976975819550173]
衛星画像から地上バイオマスを推定するための既存のデータセットは限られている。
このデータセットは、GEDIミッションからのAGB参照データとSentinel-2とPALSAR-2の画像のデータを組み合わせる。
これには、密集した天蓋の高さマップ、標高マップ、土地被覆分類マップなど、事前処理された高水準の特徴が含まれている。
単一の行のコードで簡単にアクセスでき、グローバルなAGB推定への取り組みの確固たる基盤を提供する。
論文 参考訳(メタデータ) (2024-06-07T13:34:17Z) - AGL-NET: Aerial-Ground Cross-Modal Global Localization with Varying Scales [45.315661330785275]
我々は,LiDAR点雲と衛星地図を用いたグローバルローカライゼーションのための新しい学習手法であるAGL-NETを提案する。
我々は,特徴マッチングのための画像と点間の表現ギャップを埋めること,グローバルビューとローカルビューのスケールの相違に対処すること,という2つの重要な課題に取り組む。
論文 参考訳(メタデータ) (2024-04-04T04:12:30Z) - Estimating optical vegetation indices and biophysical variables for temperate forests with Sentinel-1 SAR data using machine learning techniques: A case study for Czechia [32.19783248549554]
森林生態系をモニタリングするための現在の光学的植生指標(VIs)は,様々な用途でよく確立され,広く利用されている。
対照的に、合成開口レーダ(SAR)のデータは、雲や昼夜の画像取得による信号の侵入により、完全な時系列(TS)を備えた洞察に富んだ、体系的な森林モニタリングを提供することができる。
本研究では、SARデータを用いて、機械学習(ML)による森林の光VIs推定の代替として光学衛星データの限界に対処することを目的とする。
一般に、SARベースのVIを高精度に推定し、年間240回測定し、空間分解能を20mまで向上することができる。
論文 参考訳(メタデータ) (2023-11-13T18:23:46Z) - Estimation of forest height and biomass from open-access multi-sensor
satellite imagery and GEDI Lidar data: high-resolution maps of metropolitan
France [0.0]
本研究は、森林パラメータの局所マップを作成するために以前開発された機械学習アプローチを用いている。
我々はGEDI Lidarミッションを基準高度データとして,Sentinel-1,Sentinel-2,ALOS-2 PALSA-2の衛星画像を用いて森林高度を推定した。
高さマップは、アロメトリック方程式を用いて体積と地上のバイオマス(AGB)に導かれる。
論文 参考訳(メタデータ) (2023-10-23T07:58:49Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
大規模言語モデルから地理空間的知識を効果的に抽出する新しい手法であるGeoLLMを提案する。
我々は、人口密度や経済生活の計測など、国際社会への関心の中心となる複数の課題にまたがるアプローチの有用性を実証する。
実験の結果, LLMは試料効率が高く, 地理空間情報に富み, 世界中のロバストであることがわかった。
論文 参考訳(メタデータ) (2023-10-10T00:03:23Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
本稿では,複数の非国家の管轄区域で同時に作成される最初の高分解能天蓋の高さマップについて述べる。
地図は、2017年から2020年にかけて、マクサー画像に基づいて訓練された自己教師モデルから特徴を抽出することによって生成される。
また、GEDI観測に基づいて訓練された畳み込みネットワークを用いた後処理のステップも導入する。
論文 参考訳(メタデータ) (2023-04-14T15:52:57Z) - Information fusion approach for biomass estimation in a plateau
mountainous forest using a synergistic system comprising UAS-based digital
camera and LiDAR [9.944631732226657]
本研究の目的は,高原山岳森林保護区の地上バイオマス(AGB)の定量化である。
我々はDAP(Digital Aero Photogrammetry)を用いて,速度,空間分解能,低コストの独特な利点を生かした。
マルチスペクトル画像から得られたCHMとスペクトル特性に基づいて,関心領域のAGBを相当のコスト効率で推定,マッピングした。
論文 参考訳(メタデータ) (2022-04-14T04:04:59Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
コスト効率のよいセンサで得られたデータからシーン形状を推定することは、ロボットや自動運転車にとって鍵となる。
本稿では,1枚のRGB画像から,低コストな能動深度センサによるスパース計測により,深度を推定する問題について検討する。
sparse networks (sans) は,深さ予測と完了という2つのタスクをmonodepthネットワークで実行可能にする,新しいモジュールである。
論文 参考訳(メタデータ) (2021-03-30T21:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。