論文の概要: Input Reconstruction Attack against Vertical Federated Large Language
Models
- arxiv url: http://arxiv.org/abs/2311.07585v1
- Date: Tue, 7 Nov 2023 09:39:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-19 14:18:26.689503
- Title: Input Reconstruction Attack against Vertical Federated Large Language
Models
- Title(参考訳): 垂直フェデレート大言語モデルに対する入力再構成攻撃
- Authors: Fei Zheng
- Abstract要約: 大規模言語モデル(LLM)は、ChatGPTの出現により、学界や大衆から広く注目を集めている。
LLMは、様々なタスクのためのテキスト生成における驚くべき能力を示しているが、プライバシに関する懸念は、現実のビジネスでの使用を制限する。
本稿では,垂直連合学習(VFL)が,このような問題に対する有望な解決策であることを示す。
モデルの底部と上部に分割することで、ユーザの入力とモデルの知識の両方を保護し、それぞれがユーザとモデルプロバイダによって維持される。
- 参考スコア(独自算出の注目度): 1.1603243575080535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, large language models (LLMs) have drawn extensive attention from
academia and the public, due to the advent of the ChatGPT. While LLMs show
their astonishing ability in text generation for various tasks, privacy
concerns limit their usage in real-life businesses. More specifically, either
the user's inputs (the user sends the query to the model-hosting server) or the
model (the user downloads the complete model) itself will be revealed during
the usage. Vertical federated learning (VFL) is a promising solution to this
kind of problem. It protects both the user's input and the knowledge of the
model by splitting the model into a bottom part and a top part, which is
maintained by the user and the model provider, respectively. However, in this
paper, we demonstrate that in LLMs, VFL fails to protect the user input since
it is simple and cheap to reconstruct the input from the intermediate
embeddings. Experiments show that even with a commercial GPU, the input
sentence can be reconstructed in only one second. We also discuss several
possible solutions to enhance the privacy of vertical federated LLMs.
- Abstract(参考訳): 近年,ChatGPTの出現により,大規模言語モデル (LLM) が学術や一般の注目を集めている。
LLMは、様々なタスクのためのテキスト生成における驚くべき能力を示しているが、プライバシーに関する懸念は、現実のビジネスでの使用を制限する。
具体的には、ユーザの入力(ユーザがモデルホストサーバにクエリを送信する)またはモデル(ユーザが完全なモデルをダウンロードする)自体が、使用中に明らかにされる。
垂直連合学習(VFL)はこの種の問題に対する有望な解決策である。
モデルの底部と上部に分割することで、ユーザの入力とモデルの知識の両方を保護し、それぞれがユーザとモデルプロバイダによって維持される。
しかし,本稿では,llmsでは,中間組込みから入力を再構成することが簡単で安価であるため,vflではユーザ入力を保護できないことを実証する。
実験の結果、商用GPUでも入力文は1秒で再構築できることがわかった。
また,垂直連合LDMのプライバシーを高めるためのいくつかの解決策についても論じる。
関連論文リスト
- REEF: Representation Encoding Fingerprints for Large Language Models [53.679712605506715]
REEFは、被疑者モデルと被害者モデルの表現との中心となるカーネルアライメントの類似性を計算し、比較する。
このトレーニング不要のREEFは、モデルの一般的な能力を損なうことなく、シーケンシャルな微調整、プルーニング、モデルマージ、置換に堅牢である。
論文 参考訳(メタデータ) (2024-10-18T08:27:02Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
大規模言語モデル(LLM)の事前トレーニングは伝統的に、Webスケールデータセットからランダムにサンプリングされたデータブロックの自己回帰言語モデリングに依存している。
我々は、空間的反復のような人間の学習技術からインスピレーションを得て、LLMのランダムなデータサンプリングが、データを忘れがちな高いトレーニングコストと低品質モデルをもたらすという仮説を立てる。
ウェブスケール情報を長期記憶に効果的にコミットするために,LFR(Learn, Focus, and Review)ペタゴギーを提案する。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - Exploring the Role of Large Language Models in Prompt Encoding for Diffusion Models [42.891427362223176]
デコーダのみの変換器をベースとした大規模言語モデル(LLM)は、優れたテキスト理解能力を示している。
LLMの能力をフル活用するための新しいフレームワークを提案する。
さらに, LLM-Infused Diffusion Transformer (LI-DiT) を設計した。
論文 参考訳(メタデータ) (2024-06-17T17:59:43Z) - Show, Don't Tell: Aligning Language Models with Demonstrated Feedback [54.10302745921713]
Demonstration ITerated Task Optimization (DITTO)は、言語モデルの出力とユーザの実証された振る舞いを直接調整する。
我々は,DITTOがニュース記事やメール,ブログ記事などのドメイン間できめ細かいスタイルやタスクアライメントを学習する能力を評価する。
論文 参考訳(メタデータ) (2024-06-02T23:13:56Z) - ProFLingo: A Fingerprinting-based Intellectual Property Protection Scheme for Large Language Models [18.46904928949022]
大規模言語モデル(LLM)のためのブラックボックス指紋認証に基づくIP保護スキームProFLingoを提案する。
ProFLingoは、オリジナルのモデルから特定の応答を引き出すクエリを生成し、ユニークな指紋を確立する。
提案手法は,疑似モデルにおけるこれらのクエリの有効性を評価し,元のモデルから派生したものかどうかを判断する。
論文 参考訳(メタデータ) (2024-05-03T20:00:40Z) - PIN: Positional Insert Unlocks Object Localisation Abilities in VLMs [55.8550939439138]
VLM(Vision-Language Models)は、大きな言語モデルと視覚システムを統合することで、大きな可能性を秘めている。
これらのモデルは、主にキャプションを含むマルチモーダルデータに対するトレーニングのため、オブジェクトローカライゼーションの基本的なコンピュータビジョンタスクにおいて課題に直面している。
本稿では,空間的プロンプトであるPIN(Input-Agnostic Positional Insert)を導入する。
我々のPINモジュールは、新しい出力ヘッドを必要とせずに、合成データに対する単純な次トーケン予測タスクで訓練されている。
論文 参考訳(メタデータ) (2024-02-13T18:39:18Z) - Machine Unlearning in Large Language Models [8.14992136443131]
本稿では,大規模言語モデルに新しい機械学習フレームワークを導入する。
我々の目標は、LSMが有害、幻覚、あるいはプライバシーを侵害する応答を生じさせないようにすることです。
実験結果から,本手法はモデル性能を実質的に損なうことなく,学習対象を効果的に満たすことが示唆された。
論文 参考訳(メタデータ) (2024-02-03T05:14:56Z) - User Modeling in the Era of Large Language Models: Current Research and
Future Directions [26.01029236902786]
ユーザモデリング(UM)は、特定のユーザに関するユーザデータからパターンを発見し、表現を学ぶことを目的としている。
データは通常、大量のユーザ生成コンテンツ(UGC)とオンラインインタラクションを含むため、テキストとグラフの2つの一般的なタイプのユーザデータである。
近年,大規模言語モデル (LLM) はテキストデータの生成,理解,推論において優れた性能を示している。
論文 参考訳(メタデータ) (2023-12-11T03:59:36Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Federated Distillation of Natural Language Understanding with Confident
Sinkhorns [12.681983862338619]
ユーザデバイス上で訓練された(ローカル)モデルのフェデレーションから,中央(グローバル)モデルを学習するためのアプローチを提案する。
グローバルモデルを学ぶためには,局所モデルに割り当てられたソフトターゲットの信頼度から,グローバルモデル予測の最適輸送コストを最小化する。
論文 参考訳(メタデータ) (2021-10-06T00:44:00Z) - Federated Learning of User Authentication Models [69.93965074814292]
機械学習モデルのプライバシー保護のためのフレームワークであるFederated User Authentication (FedUA)を提案する。
FedUAは、フェデレートされた学習フレームワークを採用して、ユーザが生の入力を共有することなく、共同でモデルをトレーニングできるようにする。
提案手法はプライバシ保護であり,多数のユーザに対してスケーラブルであることを示し,出力層を変更することなく,新たなユーザをトレーニングに追加できるようにした。
論文 参考訳(メタデータ) (2020-07-09T08:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。