Application of a Dense Fusion Attention Network in Fault Diagnosis of Centrifugal Fan
- URL: http://arxiv.org/abs/2311.07614v3
- Date: Tue, 30 Apr 2024 01:32:43 GMT
- Title: Application of a Dense Fusion Attention Network in Fault Diagnosis of Centrifugal Fan
- Authors: Ruijun Wang, Yuan Liu, Zhixia Fan, Xiaogang Xu, Huijie Wang,
- Abstract summary: This paper discusses embedding distributed attention modules into dense connections instead of traditional dense cascading operations.
The proposed dense fusion focuses on the visualization of the network diagnosis process, which increases the interpretability of model diagnosis.
Experimental results show that the network has stronger diagnostic performance than other advanced fault diagnostic models.
- Score: 15.414035116487037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although the deep learning recognition model has been widely used in the condition monitoring of rotating machinery. However, it is still a challenge to understand the correspondence between the structure and function of the model and the diagnosis process. Therefore, this paper discusses embedding distributed attention modules into dense connections instead of traditional dense cascading operations. It not only decouples the influence of space and channel on fault feature adaptive recalibration feature weights, but also forms a fusion attention function. The proposed dense fusion focuses on the visualization of the network diagnosis process, which increases the interpretability of model diagnosis. How to continuously and effectively integrate different functions to enhance the ability to extract fault features and the ability to resist noise is answered. Centrifugal fan fault data is used to verify this network. Experimental results show that the network has stronger diagnostic performance than other advanced fault diagnostic models.
Related papers
- Attention-Based Multiscale Temporal Fusion Network for Uncertain-Mode Fault Diagnosis in Multimode Processes [1.9389881806157316]
Fault diagnosis in multimode processes plays a critical role in ensuring the safe operation of industrial systems.
It faces a great challenge yet to be addressed - that is, the significant distributional differences among monitoring data from multiple modes.
This paper introduces a novel method called attention-based multiscale temporal fusion network.
The proposed model achieves superior diagnostic performance and maintains a small model size.
arXiv Detail & Related papers (2025-04-07T15:16:22Z) - Brain Network Diffusion-Driven fMRI Connectivity Augmentation for Enhanced Autism Spectrum Disorder Diagnosis [12.677178802864029]
Due to the high cost of fMRI data acquisition and labeling, the amount of fMRI data is usually small.
With the rise of generative models, especially diffusion models, the ability to generate realistic samples close to the real data distribution has been widely used for data augmentations.
arXiv Detail & Related papers (2024-09-11T08:02:57Z) - TDANet: A Novel Temporal Denoise Convolutional Neural Network With Attention for Fault Diagnosis [0.5277756703318045]
This paper proposes the Temporal Denoise Convolutional Neural Network With Attention (TDANet) to improve fault diagnosis performance in noise environments.
The TDANet model transforms one-dimensional signals into two-dimensional tensors based on their periodic properties, employing multi-scale 2D convolution kernels to extract signal information both within and across periods.
Evaluation on two datasets, CWRU (single sensor) and Real aircraft sensor fault (multiple sensors), demonstrates that the TDANet model significantly outperforms existing deep learning approaches in terms of diagnostic accuracy under noisy environments.
arXiv Detail & Related papers (2024-03-29T02:54:41Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Joint Attention-Guided Feature Fusion Network for Saliency Detection of
Surface Defects [69.39099029406248]
We propose a joint attention-guided feature fusion network (JAFFNet) for saliency detection of surface defects based on the encoder-decoder network.
JAFFNet mainly incorporates a joint attention-guided feature fusion (JAFF) module into decoding stages to adaptively fuse low-level and high-level features.
Experiments conducted on SD-saliency-900, Magnetic tile, and DAGM 2007 indicate that our method achieves promising performance in comparison with other state-of-the-art methods.
arXiv Detail & Related papers (2024-02-05T08:10:16Z) - BDHT: Generative AI Enables Causality Analysis for Mild Cognitive Impairment [34.60961915466469]
A brain diffuser with hierarchical transformer (BDHT) is proposed to estimate effective connectivity for mild cognitive impairment (MCI) analysis.
The proposed model achieves superior performance in terms of accuracy and robustness compared to existing approaches.
arXiv Detail & Related papers (2023-12-14T15:12:00Z) - Robust Learning Based Condition Diagnosis Method for Distribution
Network Switchgear [8.515214508489558]
This paper introduces a robust, learning-based method for diagnosing the state of distribution network switchgear.
Our method incorporates an expanded feature vector that includes environmental data, temperature readings, switch position, motor operation, insulation conditions, and local discharge information.
arXiv Detail & Related papers (2023-11-14T07:20:46Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
arXiv Detail & Related papers (2021-10-17T13:42:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.